

European Technical Assessment

valid for

BZ Heavy Duty Anchor

This document is for informational use only and does not underly the actualization process. This document can not be used for advertising or other purposes unless otherwise approved by MÜPRO in advance. All rights reserved. Subject to change.

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-05/0158 of 24 August 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

MÜPRO Heavy Duty Anchor BZ and BZ-IG

Torque controlled expansion anchor for use in concrete

MÜPRO Services GmbH Hessenstraße 11 65719 Hofheim-Wallau DEUTSCHLAND

MÜPRO Werk 1, Deutschland

35 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-05/0158 issued on 4 March 2015

Deutsches Institut für Bautechnik

Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-05/0158 English translation prepared by DIBt

Page 2 of 35 | 24 August 2016

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 35 | 24 August 2016

European Technical Assessment ETA-05/0158 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The MÜRPO Heavy duty anchor BZ and BZ-IG is an anchor made of galvanised steel or made of stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type BZ with external thread, washer and hexagon nut, sizes M8 to M27,
- Anchor type BZ-IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12,
- Anchor type BZ-IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,

- Anchor type BZ-IG B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action for BZ	See Annex C 1 to C 5
Characteristic resistance for seismic performance categories C1 and C2 for BZ	See Annex C 6
Characteristic resistance for static and quasi static action for BZ-IG	See Annex C 11 to C 13
Displacements under tension and shear loads for BZ	See Annex C 9 to C 10
Displacements under tension and shear loads for BZ-IG	See Annex C 15

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance			
Reaction to fire	Anchorages satisfy requirements for Class A1			
Resistance to fire for BZ	See Annex C 7 and C 8			
Resistance to fire for BZ-IG	See Annex C 14			

European Technical Assessment ETA-05/0158 English translation prepared by DIBt

Page 4 of 35 | 24 August 2016

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

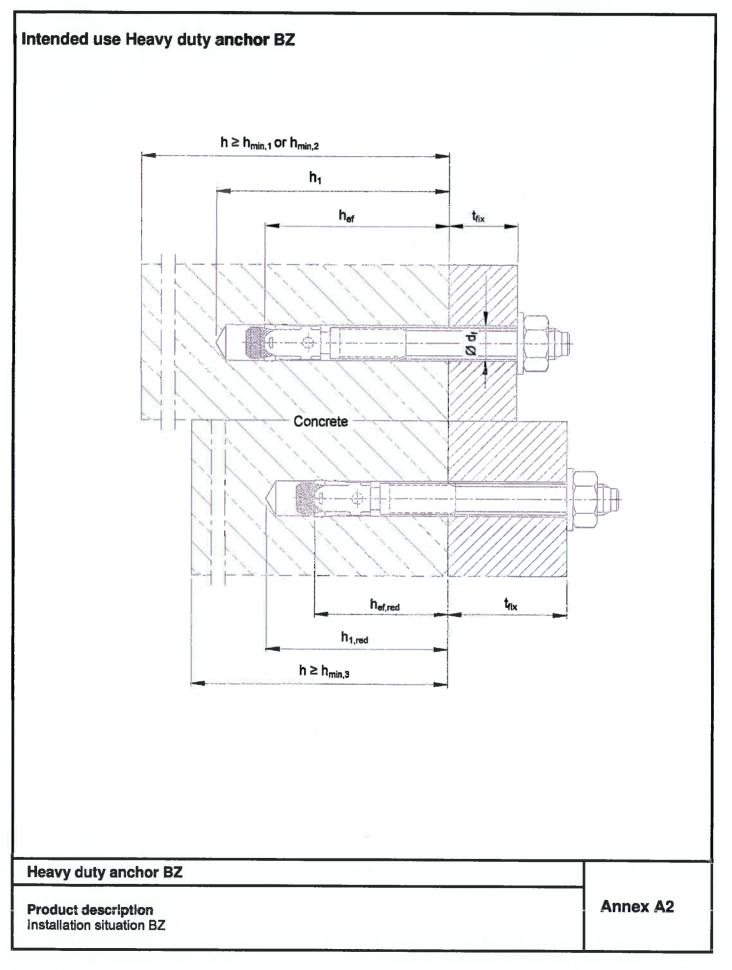
In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

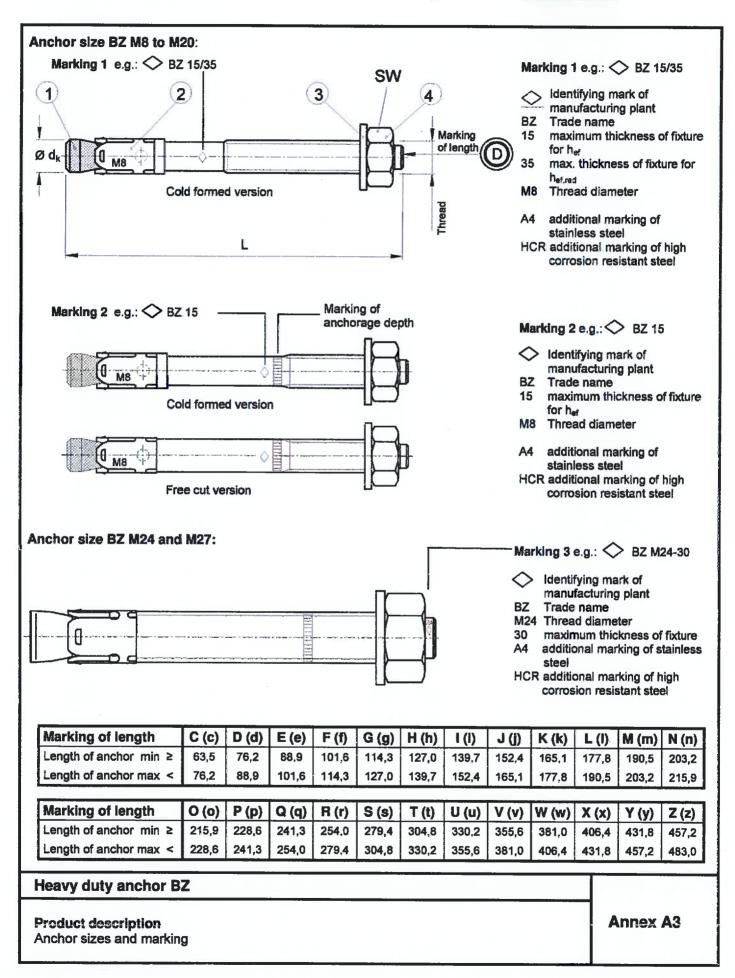
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 24 August 2016 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department


beglaubigt: Baderschneider

Heavy duty	anchor BZ						
С	onical bolt	Expansion slee	eve	Washer	Hexagon	nut	
					/	M8 t	o M20
			♦		}	M8 t	o M20
							l to M27 7 zinc plated only)
Heavy duty	anchor BZ-	-IG M6 to M12					
Anchor syste	em						
BZ-IG S			Washer				Hexagon head screw
BZ-IG SK	Conical bo		Countersunk washer			}	Countersunk head screw
BZ-IG B	Expansion	sleeve	Was -	sher Hexagon	nut		ommercial tandard rod
Anchor vers	ion	Product descript	on	Intended	use		Performance
BZ		Annex A1 – Annex Annex A1	A4	Annex B1 – A Annex B1 – A		Anne	x C1 – Annex C10
BZ-IG		Annex A5 – Annex	A7	Annex B1 – A		Annex	(C11 – Annex C15
Heavy duty	anchor BZ a	and BZ-IG					
Product desc Anchor types	cription						Annex A1

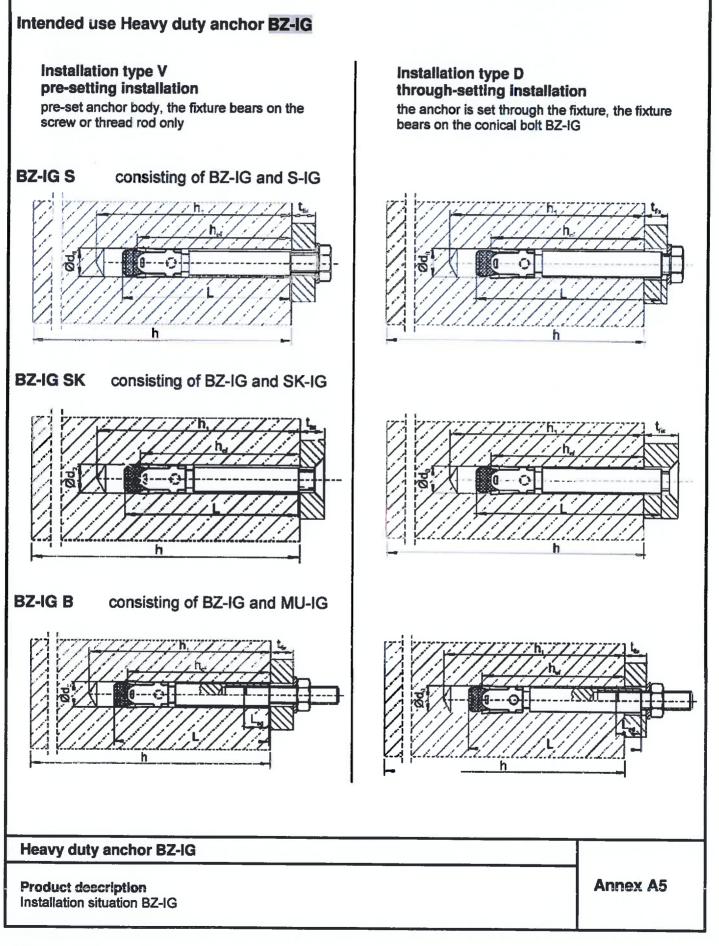

Page 6 of European Technical Assessment ETA-05/0158 of 24 August 2016

Page 7 of European Technical Assessment ETA-05/0158 of 24 August 2016

Deutsches Institut für Bautechnik

	Anchor	size		M8	M10	M12	M16	M20	M24	M27
1	$\begin{array}{c} \text{Conical bolt} & \\ \hline & & \\ &$	M8	M10	M12	M16	M20	M24	M27		
				$\emptyset d_k = 7,9 9,$	9,8	12,0	15,7	19,7	24	28
	Length	Steel, zinc plated	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{ix}	137+t _{ftx}	161+t _{fix}	178+t _{ri}
	of	A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	-
	anchor	reduced anchorage depth	L _{hef, red}	54 + t _{fix}	60 + t _{fix}	76,5+t _{fix}	98+t _{fix}	-	-	-
2	Expansio	on sleeve				S	e Table A	2		
3	Washer					Se	e Table A	2		
4	Hexagon	nut	SW	13	17	19	24	30	36	41

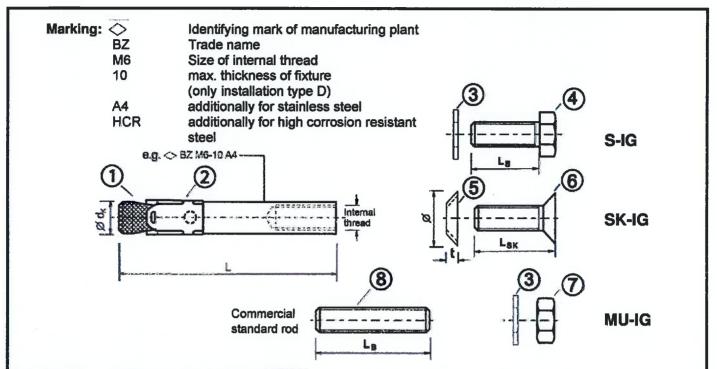
Table A2: Materials BZ


			3Z	BZ A4	BZ HCR
No.	Part	Steel, zi	nc plated	Stainless steel A4	High corrosion resistant steel (HCR)
1	Conical bolt	$\label{eq:machined} \begin{array}{l} \underline{\text{M8 to M20:}}\\ \hline \text{Cold formed or}\\ \text{machined steel,}\\ \hline \textbf{galvanised} \geq 5 \mu m,\\ \hline \text{Cone plastic coated} \end{array}$	$\label{eq:machined} \begin{array}{l} \underline{M10 \text{ to } M20:}\\ \hline \text{Cold formed or}\\ \text{machined steel,}\\ \textbf{sherardized} \geq 40 \mu\text{m},\\ \hline \text{Cone plastic coated} \end{array}$	<u>M8 to M20:</u> Stainless steel (e.g. 1.4401, 1.4404, 1.4578, 1.4571) EN 10088:2014, Cone plastic coated	<u>M8 to M20:</u> High corrosion resistan steel 1.4529 or 1.4565, EN 10088:2014, Cone plastic coated
	Threaded bolt and threaded cone	<u>M24 and M27:</u> Steel, galvanised	-	<u>M24:</u> Stainless steel (e.g. 1.4401, 1.4404) EN 10088:2014	<u>M24:</u> High corrosion resistan steel 1.4529 or 1.4565, EN 10088:2014
2	Expansion sleeve	<u>M8 to M20:</u> Steel acc. to EN 10088:2014, material No. 1.4301 or 1.4401 <u>M24 and M27:</u> Steel acc. to EN 10139:1997	<u>M10 to M20:</u> Steel acc. to EN 10088:2014, material No. 1.4301 or 1.4401	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014
3	Washer	Steel, galvanised	Steel, mechanically galvanised	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	High corrosion resistan steel 1.4529 or 1.4565, EN 10088:2014
4	Hexagon nut	Steel, galvanised, coated	Steel, hot dip galvanised	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistan steel 1.4529 or 1.4565, EN 10088:2014, coated

Heavy duty anchor BZ

Product description Dimensions and materials Annex A4

Page 9 of European Technical Assessment ETA-05/0158 of 24 August 2016



Page 10 of European Technical Assessment ETA-05/0158 of 24 August 2016

English translation prepared by DIBt

Table A3: **Anchor dimensions BZ-IG**

No.	Anchor size			M6	M8	M10	M12		
	Conical bolt with Internal thread		Ø d _k	7,9	9,8	11,8	15,7		
1	Installation type V		L	50	62	70	86		
	Installation type D		L	50 + t _{fix}	62 + t _{rix}	70 + t _{fix}	86 + t _{fix}		
2	Expansion sleeve			see table A4					
3	Washer				see ta	ble A4			
	Hexagon head scre	w wid	th across flats	10	13	17	19		
4	Installation type V		Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{rix} + (24 to 29)		
	Installation type D		Ls	14 to 20	18 to 22	20 to 22	25 to 28		
5	Countersunk	Ø cou	ntersunk	17,3	21,5	25,9	30,9		
3	washer		t	3,9	5,0	5,7	6,7		
6	Countersunk head screw		bit size	Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socke 8 mm		
	Installation type V		L _{sk}	t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{rix} + (19 to 23)	t _{fix} + (21 to 27)		
	Installation type D		L _{sk}	16 to 20	20 to 25	25	30		
7	Hexagon nut	width acı	oss flats	10	13	17	19		
8	Commercial	type V	L₃≥	t _{fix} + 21	t _{fix} + 28	t _{rix} + 34	t _{fix} + 41		
0	standard rod ¹⁾	type D	L _B ≥	21	28	34	41		

Heavy duty anchor BZ-IG

Product description

Anchor parts, marking and dimensions

Annex A6

		BZ-IG	BZ-IG A4	BZ-IG HCR	
No.	Part	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:1999	Stainless steel A4	High corrosion resistant steel HCR	
1	Conical bolt BZ-IG with internal thread	Machined steel, Cone plastic coated	Stainless steel (e.g. 1.4401, 1.4404, 1.4571, 1.4362) EN 10088:2014, Cone plastic coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, Cone plastic coated	
2	Expansion sleeve BZ-IG	Stainless steel (e.g. 1.4301, 1.4401) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	
3	Washer S-IG / MU-IG	Steel, galvanised	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014	
4	Hexagon head screw S-IG	Steel, galvanised, coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistan steel, 1.4529, 1.4565, EN 10088:2014, coated	
5	Countersunk washer SK-IG	Steel, galvanised	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, zinc plated, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, zinc plated, coated	
6	Countersunk head screw SK-IG	Steel, galvanised coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistan steel, 1.4529, 1.4565, EN 10088:2014, coated	
7	Hexagon nut MU-IG	Steel, galvanised coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistan steel, 1.4529, 1.4565, EN 10088:2014, coated	
8	Commercial standard rod	Property class 8.8, EN ISO 898-1:2013 $A_5 > 8 \%$ ductile	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, property class 70, EN ISO 3506:2009	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, property class 70, EN ISO 3506:2009	

Heavy duty anchor BZ-IG

Product description Materials Annex A7

Page 12 of European Technical Assessment ETA-05/0158 of 24 August 2016

English translation prepared by DIBt

Heavy duty anchor BZ							
Standard anchorage depth	M8	M10	M12	M16	M20	M24	M2
Steel, galvanised		*		1			
Steel, sherardized	-			/			
Stainless steel A4 and				1			-
high corrosion resistant steel HCR							
Static or quasi-static action				1			
Fire exposure				1			
Seismic action (C1 and C2) ¹⁾		-					
Reduced anchorage depth 1)	M8	M10	M12	M16			
Steel, galvanised			√				
Steel, sherardized	+		1				
Stainless steel A4 and		1					
high corrosion resistant steel HCR							
Static or quasi-static action		1					
Fire exposure	4						
Seismic action (C1 and C2)							
¹⁾ only cold formed anchors acc. to Annex A3							
Heavy duty anchor BZ-IG	Me	5	M8	M10	M	12	
Steel zinc plated			1	•			
Stainless steel A4 and			~	e			
high corrosion resistant steel HCR							
Static or quasi-static action			~				
Fire exposure		✓					
Seismic action (C1 and C2)							

- (steel zinc plated, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Heavy duty anchor BZ and BZ-IG

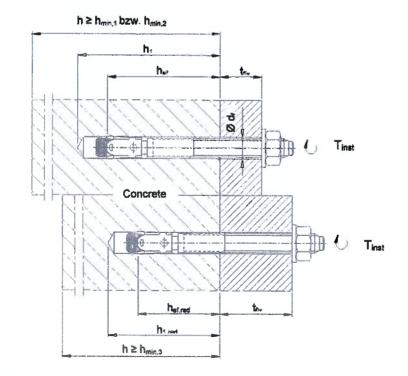
Intended use Specifications

Specifications of intended use

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed
- Anchorages under fire exposure are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 and EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4: 2009, Annex D
 - It must be ensured that local spalling of the concrete cover does not occur

Installation:


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- . Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor,
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.

Heavy duty anchor BZ and BZ-IG

Intended use Specifications

Deutsches Institut für Bautechnik

Anchor size)			M8	M10	M12	M16	M20	M24	M27
Nominal drill	hole diameter	do	[mm]	8	10	12	16	20	24	28
Cutting diame	eter of drill bit	d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
	Steel, galvanised	Tinst	[Nm]	20	25	45	90	160	200	300
Installation	Steel, sherardized	Tinst	[Nm]	-	22	40	90	160	-	-
torque	Stainless steel A4, HCR	T _{inst}	[Nm]	20	35	50	110	200	290	-
Diameter of o hole in the fix		d _f ≤	[mm]	9	12	14	18	22	26	30
Standard an	chorage depth									
Depth of	Steel, zinc plated	h₁ ≥	[mm]	60	75	90	110	125	145	160
drill hole	Stainless steel A4, HCR	h₁ ≥	[mm]	60	75	90	110	125	155	-
Effective	Steel, zinc plated	h _{ef}	[mm]	46	60	70	85	100	115	125
anchorage depth	Stainless steel A4, HCR	h _{ef}	[mm]	46	60	70	85	100	125	-
Reduced and	chorage depth							2.1.1.2		1.1
Depth of drill	hole	$h_{1,red} \ge$	[mm]	49	55	70	90			
Reduced effe depth	ctive anchorage	h _{ef,red}	[mm]	35	40	50	65	-	-	-

Heavy duty anchor BZ

Intended use Installation parameters

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard thickness of concrete	e member							1.6-	
Steel zinc plated									_
Standard thickness of member	h _{min,1}	[mm]	100	120	140	170	200	230	250
Cracked concrete									
Minimum spacing	Smin	[mm]	40	45	60	60	95	100	125
	for c ≥	[mm]	70	70	100	100	150	180	300
Minimum edge distance	Cmin	[mm]	40	45	60	60	95	100	180
	for s ≥	[mm]	80	90	140	180	200	220	540
Non-cracked concrete			_						0
Minimum spacing	Smin	[mm]	40	45	60	65	90	100	125
	for c ≥	[mm]	80	70	120	120	180	180	300
Minimum edge distance	Cmin	[mm]	50	50	75	80	130	100	180
	for s ≥	[mm]	100	100	150	150	240	220	540
Stainless steel A4, HCR	_		_					_	
Standard thickness of member	h _{min,1}	[mm]	100	120	140	160	200	250	-
Cracked concrete									
Minimum spacing	Smin	[៣៣]	40	50	60	60	95	125	
	for c ≥	[mm]	70	75	100	100	150	125	-
Minimum edge distance	Cmin	[mm]	40	55	60	60	95	125	
	for s ≥	[mm]	80	90	140	180	200	125	
Non-cracked concrete							-		
Minimum spacing	Smin	[mm]	40	50	60	65	90	125	
	for c ≥	[mm]	80	75	120	120	180	125	-
Minimum edge distance	Cmin	[mm]	50	60	75	80	130	125	
	for s ≥	[mm]	100	120	150	150	240	125	-
Minimum thickness of concrete									
Steel zinc plated, stainless ste							r		
Minimum thickness of member	h _{min,2}	[mm]	80	100	120	140	<u> </u>	-	
Cracked concrete			10	4.5		=			
Minimum spacing	Smin	[mm]	40	45	60	70	4		
	for c ≥	[mm]	70	90	100	160	-	-	-
Minimum edge distance	Cmin	[mm]	40	50	60	80			
New every descente	for s ≥	[mm]	80	115	140	180	I		
Non-cracked concrete		frame	40	60	60	00	1		1
Minimum spacing	Smin	[mm] [mm]	40 80	60 140	60 120	80 180			
Minimum edge distance	for c ≥		50	90	75	90	-	- 1	-
withinfulli edge distance	C _{min} for s ≥	[mm] [mm]	100	140	150	200			
	101 8 2	finnið f	100	140	150	200			1
Fire exposure from one side					يبقر حارا				1.000
Minimum spacing	S _{min.fi}	[mm]		5	See norma	l ambient	temperatu	re	
Minimum edge distance	C _{min,fi}	[mm]		5	See norma	l ambient	temperatu	re	
Fire exposure from more than									6
Minimum spacing	S _{min,fi}	[mm]		ş	See norma	l ambient	temperatu	re	
Minimum edge distance	C _{min,fi}	[mm]				≥ 300 mm			
ntermediate values by linear interpola									
Heavy duty anchor BZ								Anne	x R4

Deutsches Institut für Bautechnik

Anchor size			M8	M10	M12	M16
Minimum thickness of concrete member	h _{min,3}	[mm]	80	80	100	140
Cracked concrete						
Minimum spacing	Smin	[mm]	50	50	50	65
	for c ≥	[mm]	60	100	160	170
Minimum edge distance	Cmin	[mm]	40	65	65	100
within the edge distance	for s ≥	[mm]	185	180	250	250
Non-cracked concrete						
Minimum spacing	Smin	[mm]	50	50	50	65
Minimum spacing	for c ≥	[mm]	60	100	160	170
Minimum edge distance	Cmin	[mm]	40	65	100	170
	for s ≥	[mm]	185	180	185	65
Fire exposure from one side				1		
Minimum spacing	S _{min,fi}	[mm]	S	ee normal amb	ient temperatu	re
Minimum edge distance	C _{min,fi}	[mm]		ee normal amb		
Fire exposure from more than one sid						
Minimum spacing	Smin,fi	[mm]	S	ee normal amb	ient temperatu	re
Minimum edge distance	C _{min,fi}	[mm]		≥ 300		

Intermediate values by linear interpolation.

Heavy duty anchor BZ

Intended use Minimum spacings and edge distances for reduced anchorage depth

Page 17 of European Technical Assessment ETA-05/0158 of 24 August 2016

Installa	tion instructions BZ		
1	90 ⁹ (4111-6)7	Drill hole perpendicular to concrete surface.	
2		Blow out dust. Alternatively vacuum clean down to the bottom hole.	of the
3		Check position of nut.	
4		Drive in anchor, such that h _{ef} or h _{af,red} depth is m compliance is ensured, if the thickness of fixture greater than the maximum thickness of fixture m the anchor in accordance with Annex A3.	is not
5		Max. tightening torque T _{inst} shall be applied by using calibrated torque wrench.	
avy duty	y anchor BZ		
ended Us tallation in	se nstructions		Annex B6

Deutsches Institut DIBt für Bautechnik

Table B4: Installation parameters BZ-IG

Anchor size				M6	M8	M10	M12
Effective anchorage depth		h _{ef}	[mm]	45	58	65	80
Drill hole diameter		do	[mm]	8	10	12	16
Cutting diameter of drill bit		d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5
Depth of drill hole		h₁≥	[mm]	60	75	90	105
Screwing depth of threaded rod		L _{sd} ²⁾ ≥	[mm]	9	12	15	18
		S	[Nm]	10	30	30	55
Installation moment, steel zinc plated	Tinst	SK	[Nm]	10	25	40	50
		В	[Nm]	8	25	30	45
		S	[Nm]	15	40	50	100
Installation moment, stainless steel A4, HCR	Tinst	SK	[Nm]	12	25	45	60
		В	[Nm]	8	25	40	80
Installation type V (Pre-setting in	stallation)						
Diameter of clearance hole in the fi	ixture	d _f ≤	[mm]	7	9	12	14
		S	[mm]	1	1	1	1
Minimum thickness of fixture	t _{fix} ≥	SK	[mm]	5	7	8	9
		В	[mm]	1	1	1	1
Installation type D (Through-sett	ing installe	ation)					
Diameter of clearance hole in the fi	xture	d _f ≤	[mm]	9	12	14	18
		S	[mm]	5	7	8	9
Minimum thickness of fixture 1)	t _{fix} ≥	SK	[mm]	9	12	14	16
		В	[mm]	5	7	8	9

1) The minimum thickness of fixture can be reduced to the value of installation type V, if the shear load at steel failure is designed with lever arm. ²⁾ see Annex A5

Minimum spacings and edge distances BZ-IG Table B5:

Anchor size			M6	M8	M10	M12
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Cracked concrete						
Minimum spacing	Smin	[mm]	50	60	70	80
	for c ≥	[mm]	60	80	100	120
Minimum edge distance	Cmin	[mm]	50	60	70	80
	for $s \ge 1$	[mm]	75	100	100	120
Non-cracked concrete						
Minimum spacing	Smin	[mm]	50	60	65	80
	for c ≥	[mm]	80	100	120	160
Minimum edge distance	Cmin	[mm]	50	60	70	100
	for s ≥	[mm]	115	155	170	210
Fire exposure from one side						
Minimum spacing	S _{min,fi}	[mm]		See normal	temperature	
Minimum edge distance	C _{min,fi}	[mm]		See normal	temperature	
Fire exposure from more than one side		_				
Minimum spacing	S _{min,fi}	[mm]		See normai	temperature	
Minimum edge distance	C _{min,fi}	[mm]		≥ 300) mm	
Intermediate values by linear interpolation.						

Heavy duty anchor BZ-IG

Intended use

Installation parameters, minimum spacings and edge distances

Page 19 of European Technical Assessment ETA-05/0158 of 24 August 2016

1	90°	Drill hole perpendicular to concrete surface.	
2	300	Blow out dust. Alternatively vacuum clean down to the bottom of the hole.	;
3		Setting tool for pre-setting installation insert in anchor.	
4		Drive in anchor with setting tool.	
5		Drive in srew.	
6		Max. tightening torque T _{inst} may be applied by using calibrated torque wrench.	
			<u> </u>
avy duty an	chor BZ-IG	Anne	

1	90° 4000 \$	Drill hole perpendicular to concrete surface.
2	30	Blow out dust. Altematively vacuum clean down to the bottom of the hole.
3	BZ-IGS	Setting tool for through-setting installation insert in anchor.
4	E BZ-IGS	Drive in anchor with setting tool.
5		Drive in screw.
6		Max. tightening torque T _{inst} may be applied by using calibrated torque wrench.
avy duty a	nchor BZ-IG	

Table C1: Characteristic values for tension loads, BZ zinc plated, cracked concrete, static and quasi-static action Anchor size **M8** M10 M12 M16 M20 M24 M27 Installation safety factor 1,0 [-] Y2 = Vinst Steel failure Characteristic tension resistance N_{Rk,s} [kN] 16 27 40 60 86 126 196 Partial safety factor 1,53 [-] 1,5 1,6 1,5 YMs Pull-out Standard anchorage depth Characteristic resistance in 1) 1) 1) NRKP [kN] 5 9 16 25 concrete C20/25 **Reduced anchorage depth** Characteristic resistance in 1) 1) [kN] 5 7,5 N_{Rk,p} _ concrete C20/25 0,5 I_{ck,cube} Increasing factor for NRkp ψc [-] 25 **Concrete cone failure** Effective anchorage depth het [mm] 70 46 60 85 100 115 125 35 ²⁾ Reduced anchorage depth [mm] 40 50 65 hef,rad -42 -Factor acc. to CEN/TS 1992-4 ker 7.2 [-]

¹⁾ Pull-out is not decisive.

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Heavy duty anchor BZ

Performance

Characteristic values for tension loads, BZ zinc plated, cracked concrete, static and quasi-static action

Table C2: Characteristic values for tension loads, BZ A4 / HCR, cracked concrete, static and quasi-static action **Anchor size** M8 M10 M12 M16 M20 M24 Installation safety factor [-] 1,0 Y2 = Yinst Steel failure Characteristic tension resistance [kN] NRKS 16 27 40 64 108 110 Partial safety factor [-] 1,5 YMs 1.68 1,5 **Pull-out** Standard anchorage depth Characteristic resistance in concrete NRK.P [kN] 1) 5 9 16 25 40 C20/25 **Reduced anchorage depth** Characteristic resistance in concrete 1) 1) NRKP [kN] 5 7.5 . C20/25 0,5 Increasing factor for NRkp (fck,cube VIC [-] 25 Concrete cone failure Effective anchorage depth hat [mm] 46 60 70 85 100 125 35 ²⁾ Reduced anchorage depth haf red [mm] 40 50 65 --Factor according to k_{cr} [-] 7,2 CEN/TS 1992-4

¹⁾ Pull-out is not decisive.

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Heavy duty anchor BZ

Performance

Characteristic values for tension loads, BZ A4 / HCR, cracked concrete, static and quasi-static action

Deutsches Institut für Bautechnik

Table C3: Characteristic values fo non-cracked concrete								
Anchor size		M8	M10	M12	M16	M20	M24	M27
Installation safety factor $\gamma_2 = \gamma_{inst}$	[-]				1,0			<u> </u>
Steel failure					.,.			
Characteristic tension resistance N _{Rks}	[kN]	16	27	40	60	86	126	196
			53		,5	1,6		5
Partial safety factor γ_{Ms}		1 2	55	1	,5	1,0		, <u> </u>
Standard anchorage depth Characteristic resistance in			1	T		······		
non-cracked concrete C20/25	[kN]	12	16	25	35	1)	1)	1)
Reduced anchorage depth								
Characteristic resistance in	(1. A.12			1)	1)	1		
non-cracked concrete C20/25	[kN]	7,5	9			-	-	-
Splitting For the proof against splitting failure N ⁰ RI	k,c has to	be replac	ed by N ^G Rk	se with cons	sideration c	of the memb	er thicknes	55
Standard anchorage depth	14							
Splitting for standard thickness of concrete	memb	er (The hi	gher resista	ance of cas	e 1 and ca	se 2 may b	e applied;	
the values scr.sp and ccr.sp may be linearly interpolate	d for the	e member f	thickness h	1 _{min.2} < h < h	1 _{min,1} (Case	12); Whisp= 1	.0))	
Standard thickness of concrete $h_{min,1} \ge$	[mm]	100	120	140	170	200	230	250
Case 1								
Characteristic resistance in N ⁰ _{Rk.ap}	[kN]	9	12	20	30	40	62,3	50
Horr oldokod ooriciete ozorzo			14	٤v		40	02,0	
Spacing (edge distance) $s_{\alpha,sp} (= 2 c_{\alpha,sp})$	[mm]				3 h _{ef}			
Case 2								
Characteristic resistance N [®] _{Rksp}	[kN]	12	16	25	35	50,5	62,3	70,6
III HOH-GROKEG CONCIECE OZVIZO	1							
Spacing (edge distance) $s_{cr,sp}$ (= 2 $c_{cr,sp}$)			4	h _{ef}		4,4 h _{ef}	3 h _{ef}	5 h _{ef}
Splitting for minimum thickness of concrete								
$\begin{array}{llllllllllllllllllllllllllllllllllll$		80	100	120	140			
Characteristic resistance N ⁰ _{Rk,ap}	[kN]	12	16	25	35	-		-
						-		
	[[nim]]			h _{ef}				
Reduced anchorage depth	1	20	00	100	110	1		
Minimum thickness of concrete $h_{min,3} \ge$ Characteristic resistance 10		80	80	100	140			
in non-cracked concrete C20/25	[kN]	7,5	9	17,9	26,5	-	-	-
Spacing (edge distance) $s_{\alpha,sp}$ (= 2 $c_{\alpha,sp}$)	[mm]	200	200	250	300	1	9	
Increasing factor					fck,cube	,5		
for $N_{Rk,p}$ and $N^{0}_{Rk,sp}$ ψc	[-]			($\frac{\frac{1}{25}}{25}$			1
Concrete cone failure								
Effective anchorage depth h _{ef}	[mm]	46	60	70	85	100	115	125
	[mm]	35 ²⁾	40	50	65			-
Factor according to CEN/TS 1992-4 k _{ucr}	<u> </u>				10,1			
¹⁾ Pull-out is not decisive.			-		10,1			
²⁾ Use restricted to anchoring of structural components	statically	/ indetermin	late.					
Heavy duty anchor BZ								
Performance Characteristic values for tension loads, BZ non-cracked concrete, static and quasi-static							Annex	C3

Deutsches Institut für Bautechnik

Anchor size			M8	M10	M12	M16	M20	M24
Installation safety factor	Y2 = Yinst	[-]			1	,0		
Steel failure								
Characteristic tension resistance	N _{Rk.s}	[kN]	16	27	40	64	108	110
Partial safety factor	110.0	[-]		L	5	04	1,68	1,5
Pull-out	Ytts						1,00	1,5
Standard anchorage depth Characteristic resistance in								
non-cracked concrete C20/25	N _{Rk,p}	[kN]	12	16	25	35	1)	1)
Reduced anchorage depth								- 1
Characteristic resistance in					1)	0		1
non-cracked concrete C20/25	N _{Rk,p}	[kN]	7,5	9	1)	1)	-	-
Splitting For the proof against split	ting failure N ⁰ Rke ha	as to be i	replaced by	N ⁰ _{Rk.so} with	considerati	on of the m	ember thick	ness
Standard anchorage depth				- the opt		- 4 1 3		
Splitting for standard thickness	of concrete me	mber (T	he higher i	esistance of	f case 1 and	d case 2 ma	v be applied	4.
he values s _{cr.sp} and c _{cr.sp} may be line	arly interpolated fo	r the me	mber thickr	ness h _{min,2} <	$h < h_{min,1}$ (C	case 2); whis	p= 1,0)	,
Standard thickness of concrete	h _{min,1} ≥		100	120	140	160	200	250
Case 1								
Characteristic resistance in	N ⁰ _{Rk,sp}	PL-NIT	9	40	00		40	
non-cracked concrete C20/25	IN Rk,sp	[kN]	9	12	20	30	40	-
Spacing (edge distance)	$S_{cr,sp} (= 2 C_{cr,sp})$	[mm]		_	3	h _{ef}		
Case 2								
Characteristic resistance in	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	50,5	70,6
non-cracked concrete C20/25								70,0
Spacing (edge distance)	S _{cr,sp} (= 2 C _{cr,sp})	[mm]	230	250	280	400	440	500
Splitting for minimum thickness	of concrete me	mber						
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140		
Characteristic resistance in	N ⁰ _{Rk,sp}	[kN]	12	16	25	35		-
non-cracked concrete C20/25					1.			
Spacing (edge distance)	s _{cr.sp} (= 2 c _{cr.sp})	[mm]		5	h _{ef}			
Reduced anchorage depth								
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140		
Characteristic resistance in	N ⁰ Rk.sp	[kN]	7,5	9	17,9	26,5	-	-
non-cracked concrete C20/25		Imm	200	200	250	300		
Spacing (edge distance)	$s_{cr,sp} (= 2 c_{cr,sp})$	[mm]	200	200	250	. 0,5		
ncreasing factor	ψc	[-]			(fck,cu	ibe		
for N _{Rk,p} and N ⁰ _{Rk,sp}			_		25	5 /		
Concrete cone failure		-						
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	-	-
Factor according to CEN/TS 199	2-4 k _{ucr}	[-]			10	0,1		
Pull-out is not decisive.		cally inde	eterminate.					
Use restricted to anchoring of structure								

Table C5: Characteristic values for shear loads. BZ. cracked and non-cracked concrete, static or quasi static action Anchor size **M8** M10 M12 M16 M20 M24 M27 Installation safety factor [-] 1.0 $\gamma_2 = \gamma_{inst}$ Steel failure without lever arm, Steel zinc plated Characteristic shear resistance 20,1 VRKS 12.2 30 55 69 114 169.4 [kN] Factor for ductility 1.0 k₂ [-] Partial safety factor [-] 1,25 1.33 1,25 1.25 YMs Steel failure without lever arm, Stainless steel A4, HCR Characteristic shear resistance [kN] 13 20 30 55 86 123.6 VRks Factor for ductility 1,0 k_2 [-] _ Partial safety factor 1,25 E 1,4 1,25 YMs Steel failure with lever arm, Steel zinc plated Characteristic bending resistance M^D_{Rks} [Nm] 23 47 82 216 363 898 1331,5 Partial safety factor 1,25 1,33 1,25 1,25 [-] YMs Steel failure with lever arm, Stainless steel A4, HCR Characteristic bending resistance M⁹Rks 200 [Nm] 26 52 92 454 785.4 Partial safety factor 1,25 1,4 1,25 [-] YMs Concrete pry-out failure Factor k acc. to ETAG 001, Annex C [-] 2.4 2.8 k(3) or k3 acc. to CEN/TS 1992-4 Concrete edge failure Steel zinc plated ŀ [mm] 46 60 70 85 100 Effective length of 115 125 anchor in shear Stainless steel loading with het ŀ [mm] 46 60 70 85 100 125 . A4, HCR 35¹⁾ Effective length of Steel zinc plated 40 50 [mm] 65 If,red anchor in shear _ . -Stainless steel 35¹⁾ loading with het.red 40 65 [mm] 50 If.red A4, HCR dnom Outside diameter of anchor 8 10 12 16 20 24 27 [mm]

¹⁾ Use restricted to anchoring of structural components statically indeterminate.

Heavy duty anchor BZ

Performance

Characteristic values for **shear loads**, BZ, **cracked** and **non-cracked concrete**, static or quasi static action

Page 26 of European Technical Assessment ETA-05/0158 of 24 August 2016

English translation prepared by DIBt

Deutsches Institut DIBt für Bautechnik

Anchor size			M8	M10	M12	M16	M20
Tension loads							19-2 L
Installation safety factor	γ2 = Yinst	[-]			1,0		
Steel failure, Steel zinc plat							
Characteristic resistance C1	N _{Rk,s,seis,C1}	[kN]	16	27	40	60	86
Characteristic resistance C2	NR%, seis.C2	[kN]	16	27	40	60	86
Partial safety factor	YMs, seis	[-]	1,	53	1	,5	1,6
Steel failure, Stainless stee	A4, HCR						
Characteristic resistance C1	N _{Rk.s.seis.C1}	[kN]	16	27	40	64	108
Characteristic resistance C2	NRK, Seis, C2	[kN]	16	27	40	64	108
Partial safety factor YMs,seis [-]				1,	5		1,68
Pull-out (steel zinc plated, st	ainless steel	A4 and	HCR)				
Characteristic resistance C1	N _{Rk,p.seis,C1}	[kN]	5	9	16	25	36
Characteristic resistance C2	NREp.seis.C2	[kN]	2,3	3,6	10,2	13,8	24,4
Increasing factor for N _{Rk,p}	ψc	[-]			1,0		
Shear loads							
Steel failure without lever a	rm, Steel zi	nc plate	d				
Characteristic resistance C1	VRIK, Seis, C1	[kN]	9,3	20	27	44	69
Characteristic resistance C2	V _{Rk,s,seis,C2}	[kN]	6,7	14	16,2	35,7	55,2
Partial safety factor	YMa, seis	[-]		1,	25		1,33
Steel failure without lever a	rm, Stainles	ss steel	A4, HCR				
Characteristic resistance C1	V _{Rks.seis,C1}	[kN]	9,3	20	27	44	69
Characteristic resistance C2	V _{Rk,s.seis,C2}	[kN]	6,7	14	16,2	35,7	55,2
Partial safety factor	YMs, seis	[-]		1,	25		1,4

Heavy duty anchor BZ

Performance

Characteristic resistance for selsmic loading, BZ, standard anchorage depth, performance category C1 and C2

Table C7:Characteristic values for tension and shear load under fire exposure, BZ,
standard anchorage depth, cracked and non-cracked concrete C20/25 to
C50/60

Anchor size				M8	M10	M12	M16	M20	M24	M27
Tension load										
Steel failure										
Steel, galvanis	ed									
	R30			1,5	2,6	4,1	7,7	9,4	13,6	17,6
Characteristic	R60	N	FI-517	1,1	1,9	3,0	5,6	8,2	11,8	15,3
resistance	R90	N _{Rk,s,fi}	[kN]	0,8	1,4	2,4	4,4	6,9	10,0	13,0
	R120			0,7	1,2	2,2	4,0	6,3	9,1	11,8
Stainless steel	A4, HCR									
	R30			3,8	6,9	12,7	23,7	33,5	48.2	
Characteristic	R60	81	FL-NIT	2,9	5,3	9,4	17,6	25,0	35,9	
resistance	R90	N _{Rk,s,fi}	[kN]	2,0	3,6	6,1	11,5	16,4	23,6	-
	R120			1,6	2,8	4,5	8,4	12,1	17,4	
Shear load										
Steel failure wit	hout lever arm	1								
Steel, galvanise	ed									
	R30			1,6	2,6	4,1	7,7	11	16	20,6
Characteristic	R60	- - V _{Rk,s,fi} -		1,5	2,5	3,6	6,8	11	15	19,8
resistance	R90		[kN]	1,2	2,1	3,5	6,5	10	15	19,0
	R120		ļ	1,0	2,0	3,4	6,4	10	14	18,6
Stainless steel	A4, HCR									
	R30			3,8	6,9	12,7	23,7	33,5	48,2	
Characteristic	R60			2,9	5,3	9,4	17,6	25,0	35,9	-
resistance	R90	V _{Rk,s,fi}	[kN]	2,0	3,6	6,1	11,5	16,4	23,6	
	R120		ľ	1,6	2,8	4,5	8,4	12,1	17,4	
Steel failure wit	h lever arm	'								
Steel, galvanise	ed									
	R30			1,7	3,3	6,4	16,3	29	50	75
Characteristic	R60	0		1,6	3,2	5,6	14	28	48	72
resistance	R90	M ⁰ Rk,s,fi	[Nm]	1,2	2,7	5,4	14	27	47	69
	R120		ľ	1,1	2,5	5,3	13	26	46	68
Stainless steel	A4, HCR									
	R30			3,8	9,0	19,7	50,1	88,8	153,5	
Characteristic	R60		Ì	2,9	6,8	14,6	37,2	66,1	114,3	
resistance	R90	M ⁰ Rk.s.fi	[Nm]	2,1	4,7	9,5	24,2	43,4	75,1	-
	R120			1,6	3,6	7,0	17,8	32,1	55,5	

according to TR020 / CEN/TS 1992-4. If pull-out is not decisive in Eq. 2.4 and Eq. 2.5, TR 020 N_{Rkp} must be replaced by N⁰_{Rkc}.

Heavy duty anchor BZ

Performance

Characteristic values for tension and shear load under fire exposure, BZ, standard anchorage depth, cracked and non-cracked concrete C20/25 to C50/60

Table C8:Characteristic values for tension and shear load under fire exposure, BZ,
reduced anchorage depth, cracked and non-cracked concrete C20/25 to
C50/60

			M8	M10	M12	M16
R30			1,5	2,6	4,1	7,7
R60	N	PL-NU	1,1	1,9	3,0	5,6
R90	INRk,s,fi	[KIN]	0,8	1,3	1,9	3,5
R120			0,6	1,0	1,3	2,5
HCR						
R30	1		3,2	6,9	12,7	23,7
R60		PLA17	2,5	5,3	9,4	17,6
R90	- INRk,s,fi		1,9	3,6	6,1	11,5
R120			1,6	2,8	4,5	8,4
t lever arm						
		· · · · · · · · · · · · · · · · · · ·				
R30			1,5	2,6	4.1	7,7
R60	_			1,9		5,6
R90	– V _{Rk,s,fi} –	[KN]	0,8	1,3		3,5
R120			0,6	1,0	1,3	2,5
HCR		•			· · · · · · · · · · · · · · · · · · ·	
R30			3,2	6,9	12,7	23.7
R60			2,5	5,3		17,6
R90	V Rk,s,fi	[KN]	1,9	3,6		11,5
R120	_	ſ	1,6	2,8	4,5	8,4
ver arm						
R30			1,5	3,3	6,4	16,3
R60						11,9
R90	— M° _{Rk,s,fi}	[Nm]				7,5
R120			0,6	1,2	2,1	5,3
HCR						
			3,2	8,9	19,7	50,1
R30						
	-		2,6	6,8	14,6	37.2
R30	— M ⁰ _{Rk,s,fi}	[Nm]	2,6 2,0	6,8 4,7	14,6 9,5	37,2 24,2
	R60 R90 R120 HCR R30 R60 R90 R120 It lever arm R30 R60 R90 R120 It lever arm R30 R60 R90 R120 HCR R30 R60 R90 R120 HCR R30 R60 R90 R120	R60 NRk.s.fi R90 R120 HCR R30 R60 NRk.s.fi R90 NRk.s.fi R120 NRk.s.fi R120 NRk.s.fi R120 NRk.s.fi R120 NRk.s.fi R120 NRk.s.fi R120 VRk.s.fi R120 VRk.s.fi R120 VRk.s.fi R120 VRk.s.fi R120 VRk.s.fi R30 R60 R90 VRk.s.fi R120 Ver arm	R60 NRk,s,fi [kN] R120 KN KK R30 NRk,s,fi [KN] R60 NRk,s,fi [KN] R120 NRk,s,fi [KN] R120 NRk,s,fi [KN] R120 NRk,s,fi [KN] R120 NRk,s,fi [KN] R60 VRk,s,fi [KN] R120 VRk,s,fi [KN] R120 VRk,s,fi [KN] R120 VRk,s,fi [KN] HCR R60 VRk,s,fi [KN] R120 VRk,s,fi [KN] [KN] R120 VRk,s,fi [KN] [KN]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Performance

Characteristic values for tension and shear load under fire exposure, BZ, reduced anchorage depth, cracked and non-cracked concrete C20/25 to C50/60

Deutsches Institut für Bautechnik

		M8	M10	M12	M16	M20	M24	M27
						TRAN		
N	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24
δ _{NO}	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9
δ _{N∞}	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4
N	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34
δ _{NO}	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3
δ _{Nva}	[mm]	0	,8	1,4		0,8	·	1,4
oads C2								
δ _{N,seis} ,C2(DLS)	[mm]	2,3	4,1	4,9	3,6	5,1		
δ _{N.seis,C2(ULS)}	[mm]	8,2	13,8	15,7	9,5	15,2	-	-
N	[kN]	2,4	4,3	7,6	11,9	17,1	19,0	
δΝΟ	[mm]	0,7	1,8	0,4	0,7	0,9	0.5	-
δ _{N∞}	[mm]	1,2	1,4	1.4	1.4			
N	[kN]							
δΝα								-
							-	
						-,-		
	[mm]	2,3	4.1	4.9	3.6	5.1		
	[mm]	8,2	13,8	15,7	9.5	15,2	-	-
HCR								
N	[kN]	2,4	3,6	6,1	9,0			
δ _{NO}	[mm]	0,8	0,7	0,5	1.0	-	-	-
	[mm]	1,2	1.0					
N								
SNG	[mm]	0,1	0,2	0,2	0,2	_		_
δ _{N∞}	[mm]	0,7	0,7	0,7	0,7			
	δ _{N0} δ _{No} δ _{Nseis} .cz(DLS) δ _{Nseis} .cz(DLS) δ _{Nseis} .cz(DLS) δ _{Nseis} .cz(DLS) δ _{Nseis} .cz(DLS)	δ _{N0} [mm] δ _{N2} [mm] loads C2 δ _{N,seis,C2(DLS)} δ _{N,seis,C2(ULS)} [mm] δ _{N,seis,C2(ULS)} [mm] δ _{N0} [mm] δ _{N,seis,C2(ULS)} [mm] δ _{N,seis,C2(ULS)} [mm] δ _{N,seis,C2(ULS)} [mm] δ _{N,seis,C2} (ULS) [mm] δ _{N,seis,C2} (ULS) [mm]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Heavy duty anchor BZ

Performance Displacements under tension load

Deutsches Institut für Bautechnik

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage dep	oth								
Steel zinc plated									
Shear load in cracked and non-cracked concrete	v	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8
Displacement	δνα	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6
	δv∞	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4
Displacements under seisn	nic shear loa	ds C2							
Displacements for DLS	δ√,seis,C2(DLS)	[mm]	3,0	2,7	3,5	4,3	4,7		
Displacements for ULS	δ _{V,seis,C2(ULS)}	[mm]	5,9	5,3	9,5	9,6	10,1		•
Stainless steel A4, HCR									
Shear load in cracked and non-cracked concrete	v	[kN]	7,3	11,4	17,1	31,4	43,8	70,6	
Displacement	δνο	[mm]	1,9	2,4	4,0	4,3	2,9	2,8	-
	ðv.o	[mm]	2,9	3,6	5,9	6,4	4,3	4,2	
Displacements under seisr	nic shear loa	ds C2						kesselferenkel , .	
Displacements for DLS	ð√,seis.C2(DLS)	[mm]	3,0	2,7	3,5	4,3	4,7		
Displacements for ULS	$\delta_{V,seis,C2(ULS)}$	[mm]	5,9	5,3	9,5	9,6	10,1		
Reduced anchorage dep	oth				- The second second			and the same	
Steel zinc plated									
Shear load in cracked and non-cracked concrete	V	[kN]	6,9	11,4	17,1	31,4			
Displacement	δνο	[mm]	2,0	3,2	3,6	3,5	-	-	-
	δ _{V∞}	[mm]	3,0	4,7	5,5	5,3			
Stainless steel A4, HCR									
Shear load in cracked and non-cracked concrete	V	[kN]	7,3	11,4	17,1	31,4			
Displacement	δνο	[mm]	1,9	2,4	4,0	4,3	-	-	-
	δν∞	[mm]	2.9	3,6	5,9	6,4			

Heavy duty anchor BZ

Performance Displacements under shear load

Table C11: Characteristic values for tension loads, BZ-IG, cracked concrete, static and quasi-static action

Anchor size			M6	M8	M10	M12
Installation safety factor	Y2 = Yinst	[-]		1,	2	4
Steel failure						
Characteristic tension resistance, steel zinc plated	N _{Rk,s}	[kN]	16,1	22,6	26,0	56,6
Partial safety factor	ΎMs	[-]		1	,5	
Characteristic tension resistance, stainless steel A4, HCR	N _{Rk,s}	[kN]	14,1	25,6	35,8	59,0
Partial safety factor	Υма	[-]		1,	87	
Pull-out failure						
Characteristic resistance in cracked concrete C20/25	N _{Rkp}	[kN]	5	9	12	20
Increasing factor	ψc	[-]		$\left(\frac{f_{ck,cu}}{25}\right)$		
Concrete cone failure						
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80
Factor according to CEN/TS 1992-4	k _{cr}	[-]		7	,2	

Heavy duty anchor BZ-IG

Performance Characteristic values for tension loads, BZ-IG, cracked concrete, static and quasi-static action

Deutsches Institut für Bautechnik

Anchor size			M6	M8	M10	M12	
Installation safety factor	Y2 = Yinst	[-]		1,	2		
Steel failure							
Characteristic tension resistance, steel zinc plated	N _{Rk,s}	[kN]	16,1	22,6	26,0	56,6	
Partial safety factor	Ϋ́Ms	[-]	1,5				
Characteristic tension resistance, stainless steel A4, HCR	N _{Rk,s}	[kN]	14,1	25,6	35,8	59,0	
Partial safety factor	Ϋ́Ms	[-]		1,	87		
Pull-out							
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p}	[kN]	12	16	20	30	
Splitting ($N^{G}_{PK,c}$ has to be replaced by N^{G}	Rk,sp. The higher	resistance	of Case 1 and	d Case 2 may b	e applied.)		
Minimum thickness of concrete memb		[mm]	100	120	130	160	
Case 1							
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	9	12	16	25	
Spacing (edge distance)	$S_{cr,sp} (= 2 C_{cr,sp})$	[mm]	3 h _{ef}				
Case 2							
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	20	30	
Spacing (edge distance)	$s_{cr,sp} (= 2 c_{cr,sp})$	[mm]	5 h _{ef}				
ncreasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψc	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$				
Concrete cone failure							
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80	
Factor according to CEN/TS 1992-4	k _{ucr}	[-]		10	.1		

Heavy duty anchor BZ-IG

Performance

Characteristic values for tension loads, BZ-IG, non-cracked concrete, static and quasi-static action

ble C13: Characteristic values for s cracked and non-cracke				Jasi-static	action		
Anchor size			M6	M8	M10	M12	
Installation safety factor	Y2 = Yinst	[-]		1	1,0	<u> </u>	
BZ-IG, steel zinc plated							
Steel failure without lever arm, Installatio	n type V						
Characteristic shear resistance	V _{Rks}	[kN]	5,8	6,9	10,4	25,8	
Steel failure without lever arm, Installation					<u> </u>		
Characteristic shear resistance	V _{Rk,s}	[kN]	5,1	7,6	10,8	24,3	
Steel failure with lever arm, Installation ty							
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	12,2	30,0	59,8	104,6	
Steel failure with lever arm, installation ty							
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	36,0	53,2	76,0	207	
Partial safety factor for V _{Rks} and M ⁰ _{Rks}	YME	[-]			25		
Factor of ductility	k2	[-]	1,0				
BZ-IG, stainless steel A4, HCR							
Steel failure without lever arm, Installation	n type V						
Characteristic shear resistance	V _{Rk,s}	[kN]	5,7	9,2	10,6	23,6	
Partial safety factor	Yms	[-]	1,25				
Steel failure without lever arm, Installation	n type D						
Characteristic shear resistance	V _{Rk,s}	[kN]	7,3	7,6	9,7	29,6	
Partial safety factor	YMs	[-]		1,	.25	L	
Steel failure with lever arm, Installation ty	pe V						
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	10,7	26,2	52,3	91,6	
Partial safety factor	YMs	[-]		1,56			
Steel failure with lever arm, Installation ty							
Characteristic bending resistance	M ⁰ Rk.	[Nm]	28,2	44,3	69,9	191,2	
Partial safety factor	γ _{Ms}	[-]	1,25				
Factor of ductility	k ₂	[-]	1,0				
Concrete pry-out failure							
Factor k acc. to ETAG 001, Annex C or k_3 acc. to CEN/TS 1992-4	k ₍₃₎	[-]	1,5	1,5	2,0	2,0	
Concrete edge failure							
Effective length of anchor in shear loading	4	[mm]	45	58	65	80	
Effective diameter of anchor	d _{nom}	[mm]	8	10	12	16	

Heavy duty anchor BZ-IG

Performance

Characteristic values for shear loads, BZ-IG, cracked and non-cracked concrete, static and quasi-static action

Deutsches Institut für Bautechnik

Anchor size			M6	M8	M10	M12
Tension load			1 M (1 M)		والمتحد والأرداد	
Steel failure						
Steel zinc plated					·· ·· ·· ·· ·· ·	
	R30		0,7	1,4	2,5	3,7
Characteristic	R60		0,6	1,2	2,0	2,9
resistance	R90 N _{Rk,s,fi}	[kN] -	0,5	0,9	1,5	2,2
	R120		0,4	0,8	1,3	1,8
Stainless steel A		· ·				
	R30		2,9	5,4	8,7	12,6
Characteristic	R60		1,9	3,8	6,3	9,2
resistance	R90 N _{Rk,s,fi}	[kN] —	1,0	2,1	3,9	5,7
	R120		0,5	1,3	2,7	4,0
Shear load		1 1	-1-			
Steel failure with	out lever arm					
Steel zinc plated						
	R30		0,7	1,4	2,5	3,7
Characteristic	R60	-	0,6	1,2	2,0	2,9
resistance	R90 V _{Rk,s,fi}	[kN]	0,5	0,9	1,5	2,2
	R120		0,4	0,8	1,3	1,8
Stainless steel A	4. HCR				<u> </u>	
	R30		2,9	5,4	8,7	12,6
Characteristic	REO		1,9	3,8	6,3	9,2
resistance	R90 V _{Rk,s,fi}	[kN]	1,0	2,1	3,9	5,7
	R120		0,5	1,3	2,7	4.0
Steel failure with				·		
Steel zinc plated						
piatos	R30		0,5	1,4	3,3	5,7
Characteristic	Dee		0,4	1,2	2,6	4,6
resistance	R90 M ⁰ _{Rk,s,l}	[Nm] -	0,4	0,9	2,0	3,4
	R120		0,3	0,8	1,6	2,8
Stainless steel						
	R30		2,2	5,5	11,2	19,6
Characteristic	Pen		1,5	3,9	8,1	14,3
resistance	R90 M ⁰ _{Rk,s,t}	[Nm] -	0,7	2,2	5,1	8,9
	R120		0,4	1,3	3,5	6,2

The characteristic resistance for pull-out failure, concrete cone failure, concrete pry-out failure and concrete edge failure can be designed according to TR020 / CEN/TS 1992-4.

Heavy duty anchor BZ-IG

Performance

Characteristic values for tension and shear loads under fire exposure, BZ-IG cracked and non-cracked concrete C20/25 to C50/60

Deutsches Institut für Bautechnik

Table C15: Displacements under tension load, BZ-IG

Anchor size		2	M6	M8	M10	M12
Tension load in cracked concrete	N	[kN]	2,0	3,6	4,8	8,0
Displacements	δ _{NO}	[mm]	0,6	0,6	0,8	1,0
Displacements	Ô _{Neo}	[mm]	0,8	8,0	1,2	1,4
Tension load in non-cracked concrete	N	[kN]	4,8	6,4	8,0	12,0
Diaglagement	Õno	[mm]	0,4	0,5	0,7	0,8
Displacements		[mm]	0,8	0,8	1,2	1,4

Table C16: Displacements under shear load, BZ-IG

Anchor size			M6	M8	M10	M12
Shear load in cracked and non-cracked concrete	v	[kN]	4,2	5,3	6,2	16,9
Displacements	δνο	[mm]	2,8	2,9	2,5	3,6
	δ _{Veo}	[mm]	4,2	4,4	3,8	5,3

Heavy duty anchor BZ-IG

Performance Displacements under tension load and under shear load