

# **European technical assessment**

MKT Injection system VMU Plus for masonry

valid for

Injection anchor XV Plus

This document is for informational use only and does not underly the actualization process.

This document can not be used for advertising or other purposes unless otherwise approved by MÜPRO in advance. All rights reserved. Subject to change.





Approval body for construction products and types of construction

**Bautechnisches Prüfamt** 

An institution established by the Federal and Laender Governments



## European Technical Assessment

ETA-13/0909 of 8 December 2016

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system VMU plus for masonry

Injection system for use in masonry

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

Werk 2, D

61 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal Injection Anchors for Use in Masonry", ETAG 029, April 2013.

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.



# European Technical Assessment ETA-13/0909

Page 2 of 61 | 8 December 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z73822.16 8.06.04-256/16



#### **European Technical Assessment** ETA-13/0909

Page 3 of 61 | 8 December 2016

English translation prepared by DIBt

#### **Specific Part**

#### 1 Technical description of the product

The Injection System VMU plus for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar VMU plus or VMU plus Polar, a perforated sleeve and an anchor rod with hexagon nut and washer. The steel elements are made of zinc coated steel or stainless steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The Illustration and the description of the product are given in Annex A.

#### 2 Specification of the intended use in accordance with the applicable European **Assessment Document**

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                               | Performance        |
|--------------------------------------------------------|--------------------|
| Characteristic resistance for steel elements           | See Annex C2       |
| Characteristic resistance for anchors in masonry units | See Annex C3 – C45 |
| Displacements under shear and tension loads            | See Annex C4 – C45 |
| Reduction Factor for job site tests (β-Factor)         | See Annex C1       |
| Edge distances and spacing                             | See Annex C3 – C45 |
| Group factor for group fastenings                      | See Annex C3 – C45 |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance             |
|--------------------------|-------------------------|
| Reaction to fire         | Class A1                |
| Resistance to fire       | No performance assessed |

#### 3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

Z73822.16 8.06.04-256/16



## **European Technical Assessment ETA-13/0909**

Page 4 of 61 | 8 December 2016

English translation prepared by DIBt

#### 3.4 Safety in use (BWR 4)

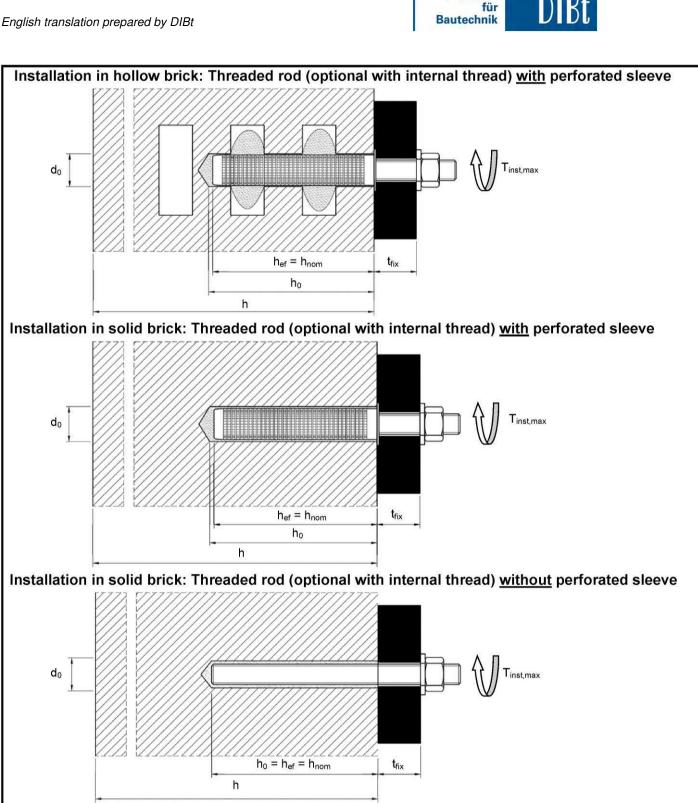
The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 029, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [97/177/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 8 December 2016 by Deutsches Institut für Bautechnik

Andreas Kummerow beglaubigt:
p.p. Head of Department Wittstock

Z73822.16 8.06.04-256/16





| -               | h                           |                    |                            |
|-----------------|-----------------------------|--------------------|----------------------------|
| h <sub>ef</sub> | = effective anchorage depth | $\mathbf{t}_{fix}$ | = thickness of fixture     |
| $h_{nom}$       | = nominal embedment depth   | $T_{inst,max}$     | = max. installation torque |
| $h_0$           | = bore hole depth           | h                  | = thickness of member      |
| $d_0$           | = bore hole diameter        |                    |                            |

Injection System VMU plus for masonry

## **Product description**

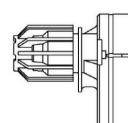
Installed condition

Annex A1



#### Cartridge VMU plus or VMU plus Polar

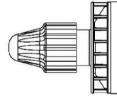
150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)


Sealing cap



Imprint: VMU plus or VMU plus Polar processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), optional with travel scale

### 235 ml, 345 ml up to 360ml and 825 ml cartridge (Type: "side-by-side")


Sealing cap



Imprint: VMU plus or VMU plus Polar processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), optional with travel scale

#### 165 ml and 300 ml cartridge (Type: "foil tube")

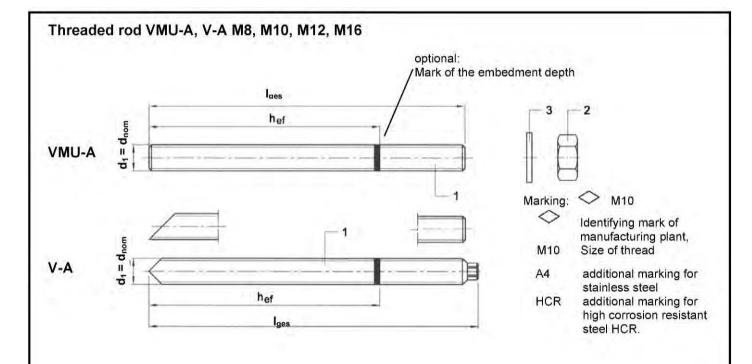
Sealing cap



Imprint: VMU plus or VMU plus Polar processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), optional with travel scale

#### Static Mixer

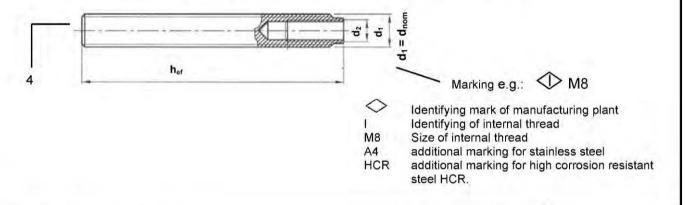



## Injection System VMU plus for masonry

#### **Product description**

Injection System

Annex A2






#### Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties see Table A1 and Table A2
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

#### Threaded rod with internal thread VMU-IG M6, VMU-IG M8 and VMU-IG M10



#### Injection System VMU plus for masonry

#### **Product description**

Threaded rods

Annex A3



| art   | Designation                                                                            | Material                                                                                                                                                                                     |
|-------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | , zinc plated ≥ 5 μm acc. to EN ISO 4<br>ip galvanized ≥ 40 μm acc. to EN IS0          | 042:1999 or Steel,<br>O 1461:2009 and EN ISO 10684:2004+AC:2009                                                                                                                              |
| 1     | Anchor rod                                                                             | Steel, EN 10087:1998 or EN 10263:2001<br>Property class 4.6, 4.8, 5.6, 5.8, and 8.8 acc.<br>EN 1993-1-8:2005+AC:2009                                                                         |
| 2     | Hexagon nut                                                                            | Steel acc. EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6, 4.8 rod) Property class 5 (for class 5.6, 5.8 rod) Property class 8 (for class 8.8 rod) acc. to EN ISO 898-2:2012 |
| 3     | Washer, EN ISO 887:2006,<br>EN ISO 7089:2000, EN ISO 7093:2000,<br>or EN ISO 7094:2000 | Steel, zinc plated or hot-dip galvanized                                                                                                                                                     |
| 4     | Threaded rod with internal thread                                                      | Steel, zinc plated<br>Property class 5.6, 5.8 and 8.8<br>acc. to. EN ISO 898-1:2013                                                                                                          |
| Stain | less steel                                                                             |                                                                                                                                                                                              |
| 1     | Anchor rod                                                                             | Material 1.4401 / 1.4404 / 1.4571 / 1.4362, EN 10088-1:2014, Property class 70, EN ISO 3506-1:2009 Property class 80, EN ISO 3506-1:2009                                                     |
| 2     | Hexagon nut                                                                            | Material 1.4401 / 1.4404 / 1.4571 / 1.4362, EN 10088-1:2014, Property class 70 (for class 70 rod), EN ISO 3506-2:2009 Property class 80 (for class 80 rod), EN ISO 3506-2:2009               |
| 3     | Washer, EN ISO 887:2006,<br>EN ISO 7089:2000, EN ISO 7093:2000,<br>or EN ISO 7094:2000 | Material 1.4401 / 1.4404 / 1.4571 / 1.4362 acc. to EN 10088-1:2014                                                                                                                           |
| 4     | Threaded rod with internal thread                                                      | Material 1.4401 / 1.4404 / 1.4571 / 1.4362 EN 10088-1:2014,<br>Property class 70 acc. to EN ISO 3506-1:2009                                                                                  |
| High  | corrosion resistant steel (HCR)                                                        |                                                                                                                                                                                              |
| 1     | Anchor rod                                                                             | Material 1.4529 / 1.4565, EN 10088-1:2014,<br>Property class 70, acc. to EN ISO 3506-1:2009<br>Property class 80, acc. to EN ISO 3506-1:2009                                                 |
| 2     | Hexagon nut                                                                            | Material 1.4529 / 1.4565, EN 10088-1:2014,<br>Property class 70 (for class 70 rod)<br>Property class 80 (for class 80 rod)<br>acc. to EN ISO 3506-2:2009                                     |
| 3     | Washer, EN ISO 887:2006,<br>EN ISO 7089:2000, EN ISO 7093:2000,<br>or EN ISO 7094:2000 | Material 1.4529 / 1.4565 acc. to EN 10088-1:2014                                                                                                                                             |
| 4     | Threaded rod with internal thread                                                      | Material 1.4529 / 1.4565 EN 10088-1:2014,<br>Property class 70 acc. to. EN ISO 3506-1:2009                                                                                                   |
| Perfo | rated sleeve                                                                           | Material: Polypropylene                                                                                                                                                                      |

| Injection System VMU plus for masonry |          |
|---------------------------------------|----------|
| Product description Materials         | Annex A4 |



Table A2: Sizes of threaded rods

| 1000          |        | Dian            | neter           | Min.<br>screw-in depth | Thread length (Internal thread) | Total length                        |  |  |
|---------------|--------|-----------------|-----------------|------------------------|---------------------------------|-------------------------------------|--|--|
| Type          | Size   | $d_1 = d_{nom}$ | d <sub>2</sub>  | $L_{IG,min}$           | L <sub>IG</sub>                 | I <sub>ges</sub>                    |  |  |
|               |        | [mm]            | [mm]            | [mm]                   | [mm]                            | [mm]                                |  |  |
| Threaded rods |        |                 |                 |                        |                                 |                                     |  |  |
|               | M8     | 8               | ×=              | -                      | 155                             | $h_{ef} + t_{fix} + 9,5$            |  |  |
| VMU-A         | M10    | 10              | 70 <b></b>      | -                      | -                               | $h_{ef} + t_{fix} + 11,5$           |  |  |
| V-A           | M12    | 12              | )) <del>-</del> | -                      | -                               | $h_{ef} + t_{fix} + 17,5$           |  |  |
|               | M16 16 |                 | n <del>e</del>  | -                      | -                               | $h_{ef} + t_{fix} + 20,0$           |  |  |
| Threaded      | rods w | ith internal th | read and m      | etric external threa   | ad                              |                                     |  |  |
|               | M6     | 10              | 6               | 8                      | 20                              | with sleeve: h <sub>ef</sub> - 5 mm |  |  |
| VMU-IG        | M8     | 12              | 8               | 8                      | 20                              | without sleeve: h <sub>ef</sub>     |  |  |
|               | M10    | 16              | 10              | 10                     | 25                              | without sieeve. Hef                 |  |  |

Table A3: Sizes of sleeves

| Туре                     | Size            | $d_s = d_{nom}$ [mm] | $L_s = h_{ef} = h_{nom}$ [mm] |
|--------------------------|-----------------|----------------------|-------------------------------|
| $L_s = h_{ef} = h_{nom}$ | VM-SH<br>12x80  | 12                   | 80                            |
| d <sub>s</sub>           | VM-SH<br>16x85  | 16                   | 85                            |
|                          | VM-SH<br>20x85  | 20                   | 00                            |
| $L_s = h_{ef} = h_{nom}$ | VM-SH<br>16x130 | 16                   | 130                           |
| d <sub>s</sub>           | VM-SH<br>20x130 | 20                   | 130                           |
|                          | VM-SH<br>20x200 | 20                   | 200                           |

Product description
Sizes of threaded rods and sleeves

Annex A5



#### Specifications of intended use

#### Anchorages subject to:

Static and quasi-static loads

#### Base material:

- Autoclaved Aerated Concrete (use category d) according to Annex B2
- Solid brick masonry (use category b), according to Annex B2.
- Hollow brick masonry (use category c), according to Annex B2 and B3.
- Mortar strength class of the masonry M 2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the anchor may be determined by job site tests according to ETAG 029, Annex B under consideration of the β factor according to Annex C1, Table C1

Note: The characteristic resistance for solid bricks and autoclaved aerated concrete are also valid for larger brick sizes and larger compressive strength of the masonry unit.

#### Temperature range:

- T<sub>a</sub>: 40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)
- T<sub>b</sub>: 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)
- T<sub>c</sub>: 40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C)

#### Use conditions (Environmental conditions):

- Dry and wet structure (regarding injection mortar).
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

#### Use categories in respect of installation and use:

Installation and use in dry masonry Category d/d:

Installation in wet masonry and use in dry masonry Category w/d:

Installation and use in dry or wet masonry Category w/w:

Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.

The anchorages are designed in accordance with the ETAG 029, Annex C, Design method A under the responsibility of an engineer experienced in anchorages and masonry work.

| Characteristic values | N <sub>Rk,s</sub> | $N_{Rk,p} = N_{Rk,b}$     | N <sub>Rk,pb</sub> |  |  |
|-----------------------|-------------------|---------------------------|--------------------|--|--|
|                       | V <sub>Rk,s</sub> | $V_{Rk,b}$ and $V_{Rk,c}$ | V <sub>Rk,pb</sub> |  |  |
| Determination acc. to | Annex C3          | Annex C4 to C45           | ETAG 029, Annex C  |  |  |

For application with sleeve with drill bit size ≤ 15mm installed in joints not filled with mortar:

$$\begin{split} N_{Rk,p,j} &= 0.18 * N_{Rk,p} \text{ and } N_{Rk,b,j} = 0.18 * N_{Rk,b} \\ V_{Rk,c,j} &= 0.15 * V_{Rk,c} \text{ and } V_{Rk,b,j} = 0.15 * V_{Rk,b} \end{split}$$
 $(N_{Rk,p} = N_{Rk,b}$  see Annex C4 to C45)

(V<sub>Rk,b</sub> and V<sub>Rk,c</sub> see Annex C4 to C45)

Application without sleeve installed in joints not filled with mortar is not allowed.

#### Installation:

- Dry or wet structures
- Drill method acc. to Annex C4 to C45.
- Anchor Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- When using anchor rods with internal thread (VMU-IG) fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the Internal threaded rod.

| Injection System VMU plus for masonry |          |
|---------------------------------------|----------|
| Intended Use Specifications           | Annex B1 |

777545 16 8.06.04-256/16



| Brick-No. | Brick type                                      | Picture           | Brick size<br>length<br>width<br>height | Compressive<br>strength | Bulk density          | Sleeve - Anchor type                                                                                                                                                                                                                   | Annex         |
|-----------|-------------------------------------------------|-------------------|-----------------------------------------|-------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|           |                                                 |                   | [mm]                                    |                         | [kg/dm <sup>3</sup> ] |                                                                                                                                                                                                                                        |               |
| Auto      | oclaved aerated                                 | concrete units ac | cording EN                              | 771-4                   |                       | 7                                                                                                                                                                                                                                      |               |
| 1         | Autoclaved<br>aerated<br>concrete<br>AAC6       |                   | 499<br>240<br>249                       | 6                       | 0,6                   | M8/M10/M12/M16<br>IG-M6/IG-M8/IG-M10                                                                                                                                                                                                   | C4<br>-<br>C5 |
| Calc      | ium silicate mas                                | sonry units accor | ding EN 771                             | -2                      |                       |                                                                                                                                                                                                                                        |               |
| 2         | Calcium<br>silicate solid<br>brick<br>KS-NF     | 0                 | 240<br>115<br>71                        | 10<br>20<br>27          | 2,0                   | M8/M10/M12/M16/IG-M6/IG-M8/IG-M10<br>VM-SH 12x80 – M8<br>VM-SH 16x85 – M8/M10/IG-M6<br>VM-SH 16x130 – M8/M10/IG-M6<br>VM-SH 20x85 – M12/M16/IG-M8/IG-M10<br>VM-SH 20x130 – M12/M16/IG-M8/IG-M10<br>VM-SH 20x200 – M12/M16/IG-M8/IG-M10 | C6<br>-<br>C8 |
| 3         | Calcium<br>silicate<br>hollow brick<br>KSL-3DF  |                   | 240<br>175<br>113                       | 8<br>12<br>14           | 1,4                   | VM-SH 12x80 - M8<br>VM-SH 16x85 - M8/M10/IG-M6<br>VM-SH 16x130 - M8/M10/IG-M6<br>VM-SH 20x85 - M12/M16/IG-M8/IG-M10<br>VM-SH 20x130 - M12/M16/IG-M8/IG-M10<br>VM-SH 20x200 - M12/M16/IG-M8/IG-M10                                      | C9<br>-<br>C1 |
| 1         | Calcium<br>silicate<br>hollow brick<br>KSL-12DF | "They             | 498<br>175<br>238                       | 10<br>12<br>16          | 1,4                   | VM-SH 12x80 - M8<br>VM-SH 16x85 - M8/M10/IG-M6<br>VM-SH 16x130 - M8/M10/IG-M6<br>VM-SH 20x85 - M12/M16/IG-M8/IG-M10<br>VM-SH 20x130 - M12/M16/IG-M8/IG-M10                                                                             | C12<br>C14    |
| Clay      | masonry units                                   | according EN 771  | 1-1                                     |                         |                       |                                                                                                                                                                                                                                        |               |
| 5         | Clay solid<br>brick<br>Mz – DF                  |                   | 240<br>115<br>55                        | 10<br>20<br>28          | 1,6                   | M8/M10/M12/M16/IG-M6/IG-M8/IG-M10<br>VM-SH 12x80 — M8<br>VM-SH 16x85 — M8/M10/IG-M6<br>VM-SH 16x130 — M8/M10/IG-M6<br>VM-SH 20x85 — M12/M16/IG-M8/IG-M10<br>VM-SH 20x130 — M12/M16/IG-M8/IG-M10<br>VM-SH 20x200 — M12/M16/IG-M8/IG-M10 | C15           |
| 5         | Clay hollow<br>brick<br>HLz-16DF                |                   | 497<br>240<br>238                       | 6<br>8<br>12<br>14      | 0,8                   | VM-SH 12x80 — M8<br>VM-SH 16x85 — M8/M10/IG-M6<br>VM-SH 16x130 — M8/M10/IG-M6<br>VM-SH 20x85 — M12/M16/IG-M8/IG-M10<br>VM-SH 20x130 — M12/M16/IG-M8/IG-M10<br>VM-SH 20x200 — M12/M16/IG-M8/IG-M10                                      | C18           |
| 7         | Clay hollow<br>brick<br>Porotherm<br>Homebric   |                   | 500<br>200<br>299                       | 4<br>6<br>10            | 0,7                   | VM-SH 12x80 - M8<br>VM-SH 16x85 - M8/M10/IG-M6<br>VM-SH 16x130 - M8/M10/IG-M6<br>VM-SH 20x85 - M12/M16/IG-M8/IG-M10<br>VM-SH 20x130 - M12/M16/IG-M8/IG-M10                                                                             | C21           |

#### Injection System VMU plus for masonry

#### Intended use

Brick types and properties with corresponding fastening elements

Annex B2



| Brick-No. | Brick type                                             | Picture           | Brick size<br>length<br>width<br>height | Compressive<br>strength | Bulk density          | Sleeve - Anchor type                                                                                                                                                                                                 | Annex    |
|-----------|--------------------------------------------------------|-------------------|-----------------------------------------|-------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|           |                                                        | L. L.             | [mm]                                    | [N/mm <sup>2</sup> ]    | [kg/dm <sup>3</sup> ] |                                                                                                                                                                                                                      |          |
| lay       | masonry units                                          | according EN 771  | -1                                      |                         |                       | VM CH 12v00 M0                                                                                                                                                                                                       | 1        |
| 8         | Clay hollow<br>brick<br>BGV Thermo                     |                   | 500<br>200<br>314                       | 4<br>6<br>10            | 0,6                   | VM-SH 12x80 - M8<br>VM-SH 16x85 - M8/M10/IG-M6<br>VM-SH 16x130 - M8/M10/IG-M6<br>VM-SH 20x85 - M12/M16/IG-M8/IG-M10<br>VM-SH 20x130 - M12/M16/IG-M8/IG-M10                                                           | C2       |
| 9         | Clay hollow<br>brick<br>Calibric R+                    |                   | 500<br>200<br>314                       | 6<br>9<br>12            | 0,6                   | VM-SH 12x80 - M8<br>VM-SH 16x85 - M8/M10/IG-M6<br>VM-SH 16x130 - M8/M10/IG-M6<br>VM-SH 20x85 - M12/M16/IG-M8/IG-M10<br>VM-SH 20x130 - M12/M16/IG-M8/IG-M10                                                           | C2<br>C2 |
| 10        | Clay hollow<br>brick<br>Urbanbric                      |                   | 560<br>200<br>274                       | 6<br>9<br>12            | 0,7                   | VM-SH 12x80 - M8<br>VM-SH 16x85 - M8/M10/IG-M6<br>VM-SH 16x130 - M8/M10/IG-M6<br>VM-SH 20x85 - M12/M16/IG-M8/IG-M10<br>VM-SH 20x130 - M12/M16/IG-M8/IG-M10                                                           | C3       |
| 11        | Clay hollow<br>brick<br>Brique<br>creuse C40           |                   | 500<br>200<br>200                       | 4<br>8<br>12            | 0,7                   | VM-SH 12x80 - M8<br>VM-SH 16x85 - M8/M10/IG-M6<br>VM-SH 16x130 - M8/M10/IG-M6<br>VM-SH 20x85 - M12/M16/IG-M8/IG-M10<br>VM-SH 20x130 - M12/M16/IG-M8/IG-M10                                                           | C3       |
| 12        | Clay hollow<br>brick<br>Blocchi<br>Leggeri             |                   | 250<br>120<br>250                       | 4<br>6<br>8<br>12       | 0,6                   | VM-SH 12x80 - M8<br>VM-SH 16x85 - M8/M10/IG-M6<br>VM-SH 16x130 - M8/M10/IG-M6<br>VM-SH 20x85 - M12/M16/IG-M8/IG-M10<br>VM-SH 20x130 - M12/M16/IG-M8/IG-M10<br>VM-SH 20x200 - M12/M16/IG-M8/IG-M10                    | C3       |
| 13        | Clay hollow<br>brick<br>Doppio Uni                     |                   | 250<br>120<br>120                       | 10<br>16<br>20<br>28    | 0,9                   | VM-SH 12x80 - M8<br>VM-SH 16x85 - M8/M10/IG-M6<br>VM-SH 16x130 - M8/M10/IG-M6<br>VM-SH 20x85 - M12/M16/IG-M8/IG-M10<br>VM-SH 20x130 - M12/M16/IG-M8/IG-M10<br>VM-SH 20x200 - M12/M16/IG-M8/IG-M10                    | C3       |
| .igh      |                                                        | te according EN 7 | 71-3                                    | r                       | ľ                     | 101 011 40 00 MO                                                                                                                                                                                                     | T        |
| 14        | Hollow<br>lightweight<br>concrete<br>Bloc creux<br>B40 |                   | 494<br>200<br>190                       | 4                       | 0,8                   | VM-SH 12x80 - M8<br>VM-SH 16x85 - M8/M10/IG-M6<br>VM-SH 16x130 - M8/M10/IG-M6<br>VM-SH 20x85 - M12/M16/IG-M8/IG-M10<br>VM-SH 20x130 - M12/M16/IG-M8/IG-M10                                                           | C4       |
| 15        | Solid<br>lightweight<br>concrete                       |                   | 300<br>123<br>248                       | 2                       | 0,6                   | M8/M10/M12/M16/IG-M6/IG-M8/IG-M10 VM-SH 12x80 — M8 VM-SH 16x85 — M8/M10/IG-M6 VM-SH 16x130 — M8/M10/IG-M6 VM-SH 20x85 — M12/M16/IG-M8/IG-M10 VM-SH 20x130 — M12/M16/IG-M8/IG-M10 VM-SH 20x200 — M12/M16/IG-M8/IG-M10 | C4       |

## Injection System VMU plus for masonry

#### Intended use

Brick types and properties with corresponding fastening elements

Annex B3



Installation: Steel brush



Table B2: Installation parameters in autoclaved aerated concrete AAC and solid masonry (without sleeve)

| Anchor type and size                      |                                |      | VMU-A M8<br>V-A M8   | VMU-A M10<br>V-A M10 | VMU- IG M6 | VMU-A M12<br>V-A M12 | VMU-IG M8 | VMU-A M16<br>V-A M16 | VMU-IG M10 |
|-------------------------------------------|--------------------------------|------|----------------------|----------------------|------------|----------------------|-----------|----------------------|------------|
| Nominal drill hole diameter               | $d_0$                          | [mm] | ] 10 12 14 1         |                      |            | 18                   |           |                      |            |
| Drill hole depth                          | h <sub>0</sub>                 | [mm] | 80                   | 90                   |            | 100                  |           | 10                   | 00         |
| Effective anchorage depth                 | h <sub>ef</sub>                | [mm] | 80                   | 90                   |            | 100                  |           | 100                  |            |
| Minimum wall thickness                    | $h_{\text{min}}$               | [mm] | h <sub>ef</sub> + 30 |                      |            |                      |           |                      |            |
| Diameter of clearance hole in the fixture | d <sub>f</sub> ≤               | [mm] | 9                    | 12                   | 7          | 14                   | 9         | 18                   | 12         |
| Diameter of steel brush                   | $d_{b}$                        | [mm] | n] 12 14 16          |                      | 2          | 0                    |           |                      |            |
| Min. diameter of steel brush              | $d_{b,min}$                    | [mm] | 10,5                 | 12,5                 |            | 14,5                 |           | 18,5                 |            |
| Max. installation torque moment           | $\textbf{T}_{\text{inst,max}}$ | [Nm] | 2 (14 for Mz DF)     |                      |            |                      |           |                      |            |

Table B3: Installation parameters in solid and hollow masonry (with sleeve)

| Anchor size                                  |                       |      | M8    | M8 / N<br>IG-I          |        | M12 / M16<br>IG-M8<br>IG-M10                     |        |        |
|----------------------------------------------|-----------------------|------|-------|-------------------------|--------|--------------------------------------------------|--------|--------|
| Sleeve                                       |                       |      | 12x80 | 16x85                   | 16x130 | 20x85                                            | 20x130 | 20×200 |
| Nominal drill hole diameter                  | d <sub>0</sub>        | [mm] | 12    | 16                      | 3      | 20                                               |        |        |
| Drill hole depth                             | h <sub>0</sub>        | [mm] | 85    | 90                      | 135    | 90                                               | 135    | 205    |
| Effective anchorage depth                    | h <sub>ef</sub>       | [mm] | 80    | 85                      | 130    | 85                                               | 130    | 200    |
| Minimum wall thickness                       | h <sub>min</sub>      | [mm] | 115   | 115                     | 175    | 115                                              | 175    | 240    |
| Diameter of clearance<br>hole in the fixture | d <sub>f</sub> ≤      | [mm] | 9     | 7 (IG-<br>9 (N<br>12 (N | 18)    | 9 (IG-M8)<br>12 (IG-M10)<br>14 (M12)<br>18 (M16) |        |        |
| Diameter of steel brush                      | dь                    | [mm] | 14    | 18                      | 3      | 22                                               |        |        |
| Min. diameter of steel brush                 | $d_{b,min}$           | [mm] | 12,5  | 16,                     | 5      |                                                  | 20,5   |        |
| Max. installation torque moment              | T <sub>inst,max</sub> | [Nm] |       |                         | 2      |                                                  |        |        |

| Injection System VMU plus for masonry                   |          |
|---------------------------------------------------------|----------|
| Intended use Cleaning brush and installation parameters | Annex B4 |



Table B4: Maximum working time and minimum curing time VMU plus

| Temperature in the base material | Temperature of cartridge | Working time | Minimum curing time in<br>dry base material <sup>1)</sup> |
|----------------------------------|--------------------------|--------------|-----------------------------------------------------------|
| -10°C to -6°C                    | + 15°C to + 40°C         | 90 min       | 24 h                                                      |
| -5°C to -1°C                     |                          | 90 min       | 14 h                                                      |
| 0 °C to +4 °C                    |                          | 45 min       | 7 h                                                       |
| +5°C to +9°C                     |                          | 25 min       | 2 h                                                       |
| + 10 °C to + 19 °C               | + 5°C to + 40°C          | 15 min       | 80 min                                                    |
| + 20 °C to + 29 °C               |                          | 6 min        | 45 min                                                    |
| + 30°C to + 34 °C                |                          | 4 min        | 25 min                                                    |
| + 35°C to + 39 °C                |                          | 2 min        | 20 min                                                    |
| + 40 °C                          |                          | 1,5 min      | 15 min                                                    |

<sup>1)</sup> In wet base material the curing time <u>must</u> be doubled.

Table B5: Maximum working time and minimum curing time VMU plus Polar

| Temperature in the base material | Temperature of cartridge | Working time | Minimum curing time in dry base material <sup>1)</sup> |
|----------------------------------|--------------------------|--------------|--------------------------------------------------------|
| -20 °C to - 16 °C                |                          | 75 min       | 24 h                                                   |
| - 15 °C to - 11 °C               |                          | 55 min       | 16 h                                                   |
| - 10 °C to - 6 °C                | -20°C to +10°C           | 35 min       | 10 h                                                   |
| - 5 °C to - 1 °C                 |                          | 20 min       | 5 h                                                    |
| 0 °C to +4 °C                    |                          | 10 min       | 2,5 h                                                  |
| +5°C to +9°C                     |                          | 6 min        | 80 min                                                 |
| + 10 °C                          |                          | 6 min        | 60 min                                                 |

<sup>1)</sup> In wet base material the curing time must be doubled.

Injection System VMU plus for masonry

Intended Use
Working and curing time

Annex B5

Intended Use

Installation instructions (Solid masonry without sleeve)



| B A A A A A A A A A A A A A A A A A A A | Attach the appropriate sized brush (acc.to Annex B4) to a drilling machine or a battery screwdriver, brush the hole clean two times.  Finally blow out the hole again two times.  Remove the cap and attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. In case of a foil tube cartridge, cut off the clip before use. For every working interruption longer than the recommended working time (Table B4 or B5) as well as for new cartridges, a new static-mixer shall be used.  The position of the embedment depth shall be marked on the threaded rod. The anchor rod shall be free of dirt, grease, oil or other foreign material.  Initial adhesive is not suitable for fixing the anchor. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes, for foil tube cartridges six full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey color. |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R C F W                                 | Attach the appropriate sized brush (acc.to Annex B4) to a drilling machine or a battery screwdriver, brush the hole clean two times.  Finally blow out the hole again two times.  Remove the cap and attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. In case of a foil tube cartridge, cut off the clip before use. For every working interruption longer than the recommended working time (Table B4 or B5) as well as for new cartridges, a new static-mixer shall be used.  The position of the embedment depth shall be marked on the threaded rod.  The anchor rod shall be free of dirt, grease, oil or other foreign material.  Initial adhesive is not suitable for fixing the anchor. Prior to dispensing into the anchor hole, equeeze out separately a minimum of three full strokes, for foil tube cartridges six full strokes and                                                                                                |
| S S S S S S S S S S S S S S S S S S S   | Finally blow out the hole again two times.  Remove the cap and attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. In case of a foil tube cartridge, cut off the clip before use. For every working interruption longer than the recommended working time (Table B4 or B5) as well as for new cartridges, a new static-mixer shall be used.  The position of the embedment depth shall be marked on the threaded rod.  The anchor rod shall be free of dirt, grease, oil or other foreign material.  Initial adhesive is not suitable for fixing the anchor. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes, for foil tube cartridges six full strokes and                                                                                                                                                                                                                                      |
| R CC F W                                | Remove the cap and attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. In case of a foil tube cartridge, cut off the clip before use. For every working interruption longer than the recommended working time (Table B4 or B5) as well as for new cartridges, a new static-mixer shall be used.  The position of the embedment depth shall be marked on the threaded rod. The anchor rod shall be free of dirt, grease, oil or other foreign material.  Initial adhesive is not suitable for fixing the anchor. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes, for foil tube cartridges six full strokes and                                                                                                                                                                                                                                                                                   |
| C.F. W                                  | cartridge into the correct dispensing tool. In case of a foil tube cartridge, cut off the clip before use. For every working interruption longer than the recommended working time (Table B4 or B5) as well as for new cartridges, a new static-mixer shall be used.  The position of the embedment depth shall be marked on the threaded rod.  The anchor rod shall be free of dirt, grease, oil or other foreign material.  Initial adhesive is not suitable for fixing the anchor. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes, for foil tube cartridges six full strokes and                                                                                                                                                                                                                                                                                                                                                                            |
| Ir se                                   | The anchor rod shall be free of dirt, grease, oil or other foreign material.  Initial adhesive is not suitable for fixing the anchor. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes, for foil tube cartridges six full strokes and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| min 3x                                  | squeeze out separately a minimum of three full strokes, for foil tube cartridges six full strokes and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | discard non-uniformly mixed adhesive components until the mortal shows a consistent grey color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| a                                       | Starting from the bottom or back of the cleaned anchor hole, fill up the hole to min two-thirds with adhesive. Slowly withdraw the static mixing nozzle will avoid creating air pockets. Observe the working times given in Table B4 and B5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| minumushing th                          | Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Be sure that the annular gap is fully filled with mortar. If no excess mortar is visible at the top of the hole, the application has to be renewed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| IIII IIIIIII IIIIIII                    | Allow the adhesive to cure to the specified curing time given in Table B4 or B5.<br>Do not move or load the anchor until it is fully cured.<br>After curing time remove access mortar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Tinst                                   | After full curing, the fixture can be installed with up to the max. installation torque acc. to Table B2 or B3 with calibrated torque wrench.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| "                                       | Tinst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Z77545.16 8.06.04-256/16

Annex B6



| 1.  | 900                | Drill hole perpendicular to the surface of base material with drill method according to Annex C4-C45, with nominal drill hole diameter and bore hole depth according to the size and embedment depth required by the selected anchor. In case of aborted drill hole the drill hole shall be filled with mortar.                                                |
|-----|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                    | Drill hole must be cleaned prior to installation of the anchor.                                                                                                                                                                                                                                                                                                |
| 2a. |                    | Blow out from the bottom of the bore hole two times.                                                                                                                                                                                                                                                                                                           |
| 2b. | , <u>0</u> (I      | Attach the appropriate sized brush (acc.to Annex B4) to a drilling machine or a battery screwdriver, brush the hole clean two times.                                                                                                                                                                                                                           |
| 2c. |                    | Finally blow out the hole again two times.                                                                                                                                                                                                                                                                                                                     |
| 3,  | -                  | Insert the perforated sleeve flush with the surface of the masonry or plaster. Only use sleeves that have the right length. Never cut the sleeve.                                                                                                                                                                                                              |
| 4.  | No. 12 September 1 | Remove the cap and attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. In case of a foil tube cartridge, cut off the clip before use. For every working interruption longer than the recommended working time (Table B4 or B5) as well as for new cartridges, a new static-mixer shall be used. |
| 5.  | hel                | The position of the embedment depth shall be marked on the threaded rod. The anchor rod shall be free of dirt, grease, oil or other foreign material.                                                                                                                                                                                                          |
| 6.  | min. 3x            | Initial adhesive is not suitable for fixing the anchor. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes, for foil tube cartridges six full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.                                                       |
| 7.  |                    | Starting from the bottom or back fill the sleeve with adhesive. For embedment depth equal to or larger than 130 mm an extension nozzle shall be used. For quantity of mortar attend cartridges label installation instructions.  Observe the working times given in Table B4 or B5.                                                                            |
| 8.  |                    | Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.                                                                                                                                                                                                        |
| 9.  | X                  | Allow the adhesive to cure to the specified curing time given in Table B4 or B5.  Do not move or load the anchor until it is fully cured.  After curing time remove access mortar.                                                                                                                                                                             |
| 10. | Tinst              | After full curing, the fixture can be installed with up to the max. installation torque acc. to Table B2 and B3 with calibrated torque wrench.                                                                                                                                                                                                                 |

Installation Instruction (Solid or hollow masonry - with sleeve)

Injection System VMU plus for masonry

Intended Use

Annex B7

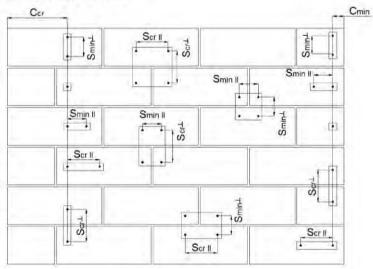


| Table C1: | β - factor for job-site testing under tension loading  |
|-----------|--------------------------------------------------------|
| 10010 011 | p lactor for job cite toothing arraor terroren roading |

| Driek No                   |                                | β-Factor              |                              |      |                              |      |                               |  |
|----------------------------|--------------------------------|-----------------------|------------------------------|------|------------------------------|------|-------------------------------|--|
| Brick-No.<br>and           | Installation &<br>Use category | T <sub>a</sub> : 40°0 | T <sub>a</sub> : 40°C / 24°C |      | T <sub>b</sub> : 80°C / 50°C |      | T <sub>c</sub> : 120°C / 72°C |  |
| abbreviation               | Use category                   | d/d                   | w/d<br>w/w                   | d/d  | w/d<br>w/w                   | d/d  | w/d<br>w/w                    |  |
| 1<br>AAC6                  | All sizes                      | 0,95                  | 0,86                         | 0,81 | 0,73                         | 0,81 | 0,73                          |  |
| 2                          | d <sub>0</sub> ≤ 14 mm         | 0,93                  | 0,80                         | 0,87 | 0,74                         | 0,65 | 0,56                          |  |
| KS-NF                      | d <sub>0</sub> ≥ 16 mm         | 0,93                  | 0,93                         | 0,87 | 0,87                         | 0,65 | 0,65                          |  |
| 3                          | d <sub>0</sub> ≤ 12 mm         | 0,93                  | 0,80                         | 0,87 | 0,74                         | 0,65 | 0,56                          |  |
| KSL-3DF                    | d <sub>0</sub> ≥ 16 mm         | 0,93                  | 0,93                         | 0,87 | 0,87                         | 0,65 | 0,65                          |  |
| 4                          | d₀ ≤ 12 mm                     | 0,93                  | 0,80                         | 0,87 | 0,74                         | 0,65 | 0,56                          |  |
| KSL-12DF                   | d₀ ≥ 16 mm                     | 0,93                  | 0,93                         | 0,87 | 0,87                         | 0,65 | 0,65                          |  |
| 5<br>MZ-DF                 |                                |                       |                              |      |                              |      |                               |  |
| 6<br>Hiz-16DF              | all sizes                      |                       | 0,86                         | 0,86 | 0,86                         | 0,73 | 0,73                          |  |
| 7<br>Porotherm Homebric    |                                |                       |                              |      |                              |      |                               |  |
| 8<br>BGV-Thermo            |                                |                       |                              |      |                              |      |                               |  |
| 9<br>Calibric R+           |                                | 0,86                  |                              |      |                              |      |                               |  |
| 10<br>Urbanbric            |                                |                       |                              |      |                              |      |                               |  |
| 11<br>Brique creuse C40    |                                |                       |                              |      |                              |      |                               |  |
| 12<br>Blocchi Leggeri      |                                |                       |                              |      |                              |      |                               |  |
| 13<br>Doppio Uni           |                                |                       |                              |      |                              |      |                               |  |
| 14                         | d₀ ≤ 12 mm                     | 0,93                  | 0,80                         | 0,87 | 0,74                         | 0,65 | 0,56                          |  |
| Bloc creux B40             | d₀≥ 16 mm                      | 0,93                  | 0,93                         | 0,87 | 0,87                         | 0,65 | 0,65                          |  |
| 15                         | d <sub>0</sub> ≤ 12 mm         | 0,93                  | 0,80                         | 0,87 | 0,74                         | 0,65 | 0,56                          |  |
| Solid lightweight concrete | d₀ ≥ 16 mm                     | 0,93                  | 0,93                         | 0,87 | 0,87                         | 0,65 | 0,65                          |  |

| Injection System VMU plus for masonry                            |          |
|------------------------------------------------------------------|----------|
| Performances β - factors for job site testing under tension load | Annex C1 |




| Anchor type                       |                   |      |    | VMU-IG |           |    | VMU- | 4, V-A |       |
|-----------------------------------|-------------------|------|----|--------|-----------|----|------|--------|-------|
| Anchor size                       |                   |      | M6 | M8     | M10       | M8 | M10  | M12    | M16   |
| Characteristic tension resistance |                   |      |    |        |           |    |      |        |       |
| Steel, property class 4.6         | N <sub>Rk,s</sub> | [kN] |    | -9-1   | -         | 15 | 23   | 34     | 63    |
| Steel, property class 4.0         | γMs               | [-]  |    | -      |           |    | 2    | ,0     |       |
| Steel, property class 4.8         | N <sub>Rk,s</sub> | [kN] | -  | ~      | 140 E 110 | 15 | 23   | 34     | 63    |
| otool, proporty stage the         | γMs               | [-]  |    | -      |           |    | 1    |        |       |
| Steel, property class 5.6         | N <sub>Rk,s</sub> | [kN] | 10 | 18     | 29        | 18 | 29   | 42     | 79    |
| January Company                   | γMs               | [-]  |    | 2,0    |           |    | 2    |        |       |
| Steel, property class 5.8         | N <sub>Rk,s</sub> | [kN] | 10 | 17     | 29        | 18 | 29   | 42     | 79    |
| 212211 1/121213 21222 212         | γMs               | [-]  |    | 1,5    |           |    | 1    |        |       |
| Steel, property class 8.8         | NRKs              | [kN] | 16 | 27     | 46        | 29 | 46   | 67     | 126   |
|                                   | γMs               | [-]  |    | 1,5    |           |    | 1    |        | - 3.2 |
| Stainless steel A4 / HCR,         | N <sub>Rk,s</sub> | [kN] | 14 | 26     | 41        | 26 | 41   | 59     | 110   |
| property class 70                 | γMs               | [-]  |    | 1,87   |           |    | 1,   |        |       |
| Stainless steel A4 / HCR,         | N <sub>Rk,s</sub> | [kN] | 16 | 29     | 46        | 29 | 46   | 67     | 126   |
| property class 80                 | γMs               | [-]  |    | 1,6    |           |    | 1    | 6      |       |
| Characteristic shear resistance   |                   |      |    |        |           |    | 1    |        |       |
| Steel, property class 4.6         | V <sub>Rk,s</sub> | [kN] |    |        |           | 7  | 12   | 17     | 31    |
| Casi, property class 4.0          | γMs               | [-]  |    | 5      |           |    | 1,   |        |       |
| Steel, property class 4.8         | $V_{Rk,s}$        | [kN] | -  |        | - 1       | 7  | 12   | 17     | 31    |
|                                   | УMs               | [-]  |    | -      |           |    | 1,   | 25     |       |
| Steel, property class 5.6         | $V_{Rk,s}$        | [kN] | 5  | 9      | 15        | 9  | 15   | 21     | 39    |
| eteel, property elace ele         | γMs               | [-]  |    | 1,67   |           |    | 1,   |        |       |
| Steel, property class 5.8         | $V_{Rk,s}$        | [kN] | 5  | 9      | 15        | 9  | 15   | 21     | 39    |
| otoon, proporty states the        | γMs               | [-]  |    | 1,25   |           | -  |      | 25     |       |
| Steel, property class 8.8         | V <sub>Rk,s</sub> | [kN] | 8  | 14     | 23        | 15 | 23   | 34     | 63    |
|                                   | γMs               | [-]  |    | 1,25   |           |    | 1,   |        |       |
| Stainless steel A4 / HCR,         | $V_{Rk,s}$        | [kN] | 7  | 13     | 20        | 13 | 20   | 30     | 55    |
| property class 70                 | γMs               | [-]  |    | 1,56   |           |    |      | 56     |       |
| Stainless steel A4 / HCR,         | $V_{Rk,s}$        | [kN] | 8  | 15     | 23        | 15 | 23   | 34     | 63    |
| property class 80                 | γMs               | [-]  |    | 1,33   |           |    | 1,   | 33     |       |
| Characteristic bending moment     |                   |      |    |        |           |    |      | ,      |       |
| Steel, property class 4.6         | $M_{Rk,s}$        | [Nm] | 75 |        | -         | 15 | 30   | 52     | 133   |
| Cited, property diass 4.5         | γMs               | [-]  |    | -      |           |    | 1,   |        |       |
| Steel, property class 4.8         | $M_{Rk,s}$        | [Nm] | 14 |        | 2.11      | 15 | 30   | 52     | 133   |
| oteel, property dass 4.0          | γMs               | [-]  |    | -      |           |    |      | 25     |       |
| Steel, property class 5.6         | M <sub>Rk,s</sub> | [Nm] | 8  | 19     | 37        | 19 | 37   | 66     | 167   |
| Closely property diagonal.        | γMs               | [-]  |    | 1,67   |           |    |      | 67     |       |
| Steel, property class 5.8         | M <sub>Rk,s</sub> | [Nm] | 8  | 19     | 37        | 19 | 37   | 66     | 167   |
| Citch, property diade of          | γMs               | [-]  |    | 1,25   |           |    | 1    | 25     |       |
| Steel, property class 8.8         | $M_{Rk,s}$        | [Nm] | 12 | 30     | 60        | 30 | 60   | 105    | 266   |
| Cital, property diago. C.C        | γMs               | [-]  |    | 1,25   |           |    |      | 25     |       |
| Stainless steel A4 / HCR,         | $M_{Rk,s}$        | [Nm] | 11 | 26     | 52        | 26 | 52   | 92     | 233   |
| property class 70                 | γMs               | [-]  |    | 1,56   |           |    | 1,   | 56     |       |
| Stainless steel A4 / HCR,         | M <sub>Rk,s</sub> | [Nm] | 12 | 30     | 60        | 30 | 60   | 105    | 266   |
| property class 80                 | Ϋ́Мs              | [-]  |    | 1,33   |           |    | 1,   | 33     |       |

## Injection System VMU plus for masonry

#### Performances

Characteristic steel resistance under tension and shear load

#### Spacing and edge distance



 $c_{cr}$  =
 Characteristic edge distance

  $c_{min}$  =
 Minimum edge distance

  $s_{cr}$  =
 Characteristic spacing

  $s_{min}$  =
 Minimum spacing

 $s_{cr,ll}$ ;  $(s_{min,ll})$  = Characteristic (minimum) spacing for anchors placed parallel to bed joint  $s_{cr,\perp}$ ;  $(s_{min,\perp})$  = Characteristic (minimum) spacing for anchors placed perpendicular to bed joint

| Load direction  Anchor position                                                   | Tension load | Shear load parallel to free edge | Shear load perpendicular to free edge |
|-----------------------------------------------------------------------------------|--------------|----------------------------------|---------------------------------------|
| Anchors places parallel to bed joint s <sub>cr,ll</sub> (s <sub>min,ll</sub> )    |              | V                                | V                                     |
| Anchors places perpendicular to bed joint s <sub>cr,⊥</sub> (s <sub>min,⊥</sub> ) |              | V I                              | V                                     |

 $\alpha_{g,N,||}$  = Group factor in case of tension load for anchors placed parallel to the bed joint Group factor in case of shear load for anchors placed parallel to the bed joint

 $\alpha_{g,N,\perp}$  = Group factor in case of tension load for anchors placed perpendicular to the bed joint  $\alpha_{g,V,\perp}$  = Group factor in case of shear load for anchors placed perpendicular to the bed joint

Group of **2** anchors:  $N_{Rk}^g = \alpha_{g,N} * N_{Rk}$  and  $V_{Rk}^g$ 

(N<sub>Rk</sub>: N<sub>Rk,b</sub> or N<sub>Rk,b,j</sub> for c<sub>cr</sub>)

 $(V_{Rk}: V_{Rk,c}; V_{Rk,c,j}; V_{Rk,b} \text{ or } V_{Rk,b,j} \text{ for } c_{cr})$ 

(with the relevant  $\alpha_g$ )

#### Injection System VMU plus for masonry

### Performances

Group of 4 anchors:

Edge distance and Spacing



#### Brick type: Autoclaved Aerated Concrete - AAC6

Table C3: Description of the brick

| Brick type                              | Autoclaved Aerated Concrete AAC6 |   |
|-----------------------------------------|----------------------------------|---|
| Bulk density $\rho  [kg/dm^3]$          | 0,6                              |   |
| Compressive strength $f_b \ge [N/mm^2]$ | 6                                | 7 |
| Code                                    | EN 771-4                         | I |
| Producer (country code)                 | e.g. Porit (DE)                  |   |
| Brick dimensions [mm]                   | 499 x 240 x 249                  |   |
| Drilling method                         | Rotary                           |   |



Table C4: Spacing and edge distance

| Anchor size           |                           |      | All sizes                 |  |
|-----------------------|---------------------------|------|---------------------------|--|
| Edge distance         | Cor                       | [mm] | 1,5*h <sub>ef</sub>       |  |
| 71                    | C <sub>min,N</sub>        | [mm] | 75                        |  |
| Minimum edge distance | Cmin, V,II (Cmin, v, 1)1) | [mm] | 75 (1,5*h <sub>ef</sub> ) |  |
| Spacing               | Scr                       | [mm] | 3*h <sub>ef</sub>         |  |
| Minimum spacing       | Smin                      | [mm] | 100                       |  |

 $c_{min,V,ll}$  for shear loading parallel to the free edge;  $c_{min,v,\perp}$  for shear loading perpendicular free edge

Table C5: Group factor for anchor group in case of tension loading

| Configuration                             | with c [mm] ≥    | with s [mm] ≥ |                     |     |     |
|-------------------------------------------|------------------|---------------|---------------------|-----|-----|
| II: anchors placed parallel to horizontal | 125 (120 for M8) | 100           |                     |     | 1,8 |
| joint                                     | 1,5*hef          | 3*hef         | α <sub>g,N,ll</sub> |     | 2,0 |
| 1: anchors placed                         | 75               | 100           |                     | [-] | 1,4 |
| perpendicular to horizontal joint         | 1,5*hef          | 3*hef         | - CAg,N,L           |     | 2,0 |

#### Table C6: Group factor for anchor group in case of shear loading parallel to free edge

| Configura                                           | tion | with c [mm] ≥ | with s [mm] ≥ |                      |     | - 70 |
|-----------------------------------------------------|------|---------------|---------------|----------------------|-----|------|
| II: anchors placed                                  |      | 75            | 100           |                      |     | 1,2  |
| parallel to horizontal joint                        | V    | 1,5*hef 3*hef |               | α <sub>g,V,II</sub>  | 1.1 | 2,0  |
| L: anchors placed perpendicular to horizontal joint | V    | 1,5*hef       | 3*hef         | $\alpha_{g,V,\perp}$ | [-] | 2,0  |

| njection System VMU plus for masonry                               |          |
|--------------------------------------------------------------------|----------|
| Performances - Autoclaved Aerated Concrete - AAC6                  | Annex C4 |
| Description of the brick, Spacing and edge distance, Group factors |          |



#### Brick type: Autoclaved Aerated Concrete - AAC6

Table C7: Group factor for anchor group in case of shear loading perpendicular to free edge

| Configurat                                                | tion    | with c [mm] ≥ | with s [mm] ≥ |                      |     |     |
|-----------------------------------------------------------|---------|---------------|---------------|----------------------|-----|-----|
| II: anchors placed<br>parallel to horizontal<br>joint     | )[V-••• | 1,5*hef       | 3,0*hef       | α <sub>g,∀,II</sub>  |     | 2,0 |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint | V       | 1,5*hef       | 3,0*hef       | $\alpha_{g,V,\perp}$ | [-] | 2,0 |

Table C8: Characteristic values of resistance under tension and shear loads

|             |                                 |           |                           | Cha            | racteristic resi      | stance                     |                   |                                   |  |
|-------------|---------------------------------|-----------|---------------------------|----------------|-----------------------|----------------------------|-------------------|-----------------------------------|--|
| Anchor size |                                 |           | Use category              |                |                       |                            |                   |                                   |  |
|             | Effective<br>anchorage<br>depth | p/p       |                           | w/w<br>w/d     |                       |                            | d/d<br>w/d<br>w/w |                                   |  |
|             | Effe<br>anch                    | 40°C/24°C | 80°C/50°C                 | 120°C/72°C     | 40°C/24°C             | 80°C/50°C                  | 120°C/72°C        | All<br>temperature<br>ranges      |  |
|             | h <sub>ef</sub>                 |           | $N_{Rk,b} = N_{Rk,p}^{1}$ | )              |                       | $N_{Rk,b} = N_{Rk,p}^{-1}$ |                   | V <sub>Rk,b</sub> <sup>2)3)</sup> |  |
|             | [mm]                            |           |                           |                | [kN]                  |                            |                   |                                   |  |
|             |                                 |           | Compress                  | ive strength f | ≥ 6 N/mm <sup>2</sup> |                            |                   |                                   |  |
| M8          | 80                              | 2,5 (2,0) | 2,5 (1,5)                 | 2,0 (1,2)      | 2,5 (1,5)             | 2,0 (1,5)                  | 1,5 (1,2)         | 6,0                               |  |
| M10/IG-M6   | 90                              | 4,0 (2,5) | 3,0 (2,0)                 | 2,5 (1,5)      | 3,5 (2,5)             | 3,0 (2,0)                  | 2,5 (1,5)         | 10,0                              |  |
| M12/IG-M8   | 100                             | 5,0 (3,5) | 4,0 (3,0)                 | 3,0 (2,5)      | 4,5 (3,0)             | 3,5 (2,5)                  | 3,0 (2,5)         | 10,0                              |  |
| M16/IG-M10  | 100                             | 6,5 (4,5) | 5,5 (3,5)                 | 4,0 (3,0)      | 5,5 (4,0)             | 5,0 (3,5)                  | 4,0 (3,0)         | 10,0                              |  |

Values are valid for c<sub>cr</sub>, values in brackets are valid for single anchors with c<sub>min</sub>

Table C9: Displacements

| Anchor size hef [mm] | hef  | h <sub>ef</sub> N | δ <sub>N</sub> / N | δηο  | δN∞       | V   | δνο  | δγ∞  |
|----------------------|------|-------------------|--------------------|------|-----------|-----|------|------|
|                      | [kN] | [mm/kN]           | [mm]               | [mm] | [mm] [kN] |     | [mm] |      |
| M8                   | 80   | 0,9               | 0.40               | 0,16 | 0,32      | 1,3 | 0,8  | 1,20 |
| M10/IG-M6            | 90   | 1,4               | 0,18               | 0,26 | 0,51      | 1,8 | 1,2  | 1,80 |
| M12/IG-M8            | 100  | 1,8               | 0.00               | 0,14 | 0,29      | 2,1 | 1.4  | 2,10 |
| M16/IG-M10           | 100  | 2,3               | 0,08               | 0,19 | 0,37      | 2,3 | 1,5  | 2,25 |

| njection System VMU plus for masonry                             |          |
|------------------------------------------------------------------|----------|
| Performances - Autoclaved Aerated Concrete - AAC6                | Annex C5 |
| Group factor, Characteristic values of resistance, Displacements |          |

For calculation of V<sub>Rk,c</sub> see ETAG029, Annex C;

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply V<sub>Rk,b</sub> by 0,8



## Brick type: Calcium silicate solid brick KS-NF

Table C10: Description of the brick

| Brick type                              | Calcium silicate solid brick<br>KS-NF |     |
|-----------------------------------------|---------------------------------------|-----|
| Bulk density ρ [kg/dm³]                 | 2,0                                   | - 6 |
| Compressive strength $f_b \ge [N/mm^2]$ | 10, 20 or 27                          |     |
| Code                                    | EN 771-2                              |     |
| Producer (country code)                 | e.g. Wemding (DE)                     |     |
| Brick dimensions [mm]                   | 240 x 115 x 71                        |     |
| Drilling method                         | Hammer                                |     |



Table C11: Spacing and edge distance

| Anchor size           |      | 37.7.4 | All sizes           |  |
|-----------------------|------|--------|---------------------|--|
| Edge distance         | Ccr  | [mm]   | 1,5*h <sub>ef</sub> |  |
| Minimum edge distance | Cmin | [mm]   | 60                  |  |
| Spacing               | Scr  | [mm]   | 3*h <sub>ef</sub>   |  |
| Minimum spacing       | Smin | [mm]   | 120                 |  |

Table C12: Group factor for anchor group in case of tension loading

| Configuration                                       |  | with c [mm] ≥ with s [mm] ≥ |                   |                     |     |     |
|-----------------------------------------------------|--|-----------------------------|-------------------|---------------------|-----|-----|
| II: anchors placed parallel to horizontal joint     |  | 60                          | 120               |                     |     | 1,0 |
|                                                     |  | 140                         | 120               | α <sub>g,N,II</sub> |     | 1,5 |
|                                                     |  | 1,5*hef                     | 3*h <sub>ef</sub> |                     |     | 2,0 |
| ⊥: anchors placed perpendicular to horizontal joint |  | 60                          | 120               |                     | [-] | 0,5 |
|                                                     |  | 1,5*hef                     | 120               | α <sub>g,N,⊥</sub>  |     | 1,0 |
|                                                     |  | 1,5*hef                     | 3*h <sub>ef</sub> |                     |     | 2,0 |

Table C13: Group factor for anchor group in case of shear loading parallel to free edge

| Configura                       | tion           | with c [mm] ≥ | with s [mm] ≥     |                      |     |     |
|---------------------------------|----------------|---------------|-------------------|----------------------|-----|-----|
| II: anchors placed              | T <sub>1</sub> | 60            | 120               |                      |     | 1,0 |
| parallel to horizontal<br>joint | V ••           | 115           | 120               | α <sub>g,∨,II</sub>  |     | 1,7 |
|                                 |                | 1,5*hef       | 3*h <sub>ef</sub> |                      |     | 2,0 |
| ⊥: anchors placed               |                | 60            | 120               |                      | [-] | 1,0 |
| perpendicular to                | V :            | 1,5*hef       | 120               | $\alpha_{g,V,\perp}$ |     | 1,0 |
| horizontal joint                |                | 1,5*hef       | 3*h <sub>ef</sub> | 1 199                |     | 2,0 |

Table C14: Group factor for anchor group in case of shear loading perpendicular to free edge

| Configuration                     | with c [mm] ≥ | with s [mm] ≥     |                     |      |     |
|-----------------------------------|---------------|-------------------|---------------------|------|-----|
| II: anchors placed                | 60            | 120               |                     |      | 1,0 |
| parallel to horizontal joint      | 1,5*hef       | 3*h <sub>ef</sub> | α <sub>g,V,II</sub> | - 55 | 2,0 |
| L. anchors placed                 | 60            | 120               |                     | [-]  | 1,0 |
| perpendicular to horizontal joint | 1,5*hef       | 3*hef             | α <sub>g,V,⊥</sub>  |      | 2,0 |

#### Injection System VMU plus for masonry

#### Performances - Calcium solid brick KS-NF

Description, Spacing and edge distance, Group factor



#### Brick type: Calcium silicate solid brick KS-NF

#### Table C15: Characteristic values of resistance under tension and shear loads

|                 |        |                                 |           |                       | Cha                       | aracteristic r       | esistance             |            |                        |
|-----------------|--------|---------------------------------|-----------|-----------------------|---------------------------|----------------------|-----------------------|------------|------------------------|
|                 |        | . o                             |           |                       |                           | Use categ            | gory                  |            |                        |
| Anchor size     | Sleeve | Effective<br>anchorage<br>depth | d/d       |                       |                           |                      | w/d<br>w/w            |            |                        |
|                 |        | m m                             | 40°C/24°C | 80°C/50°C             | 120°C/72°C                | 40°C/24°C            | 80°C/50°C             | 120°C/72°C | All temperature ranges |
|                 |        | h <sub>ef</sub>                 |           | $N_{Rk,b} = N_{Rk,p}$ | 1)                        |                      | $N_{Rk,b} = N_{Rk,p}$ | 1)         | $V_{Rk,b}^{2)3)}$      |
|                 |        | [mm]                            |           |                       |                           | [kN]                 |                       |            |                        |
| 72              |        |                                 | Co        | mpressive             | strength f <sub>b</sub> ≥ | 10 N/mm <sup>2</sup> |                       |            |                        |
| M8              | -      | 80                              |           |                       |                           |                      |                       |            | 2,5 (1,5)              |
| M10 /<br>IG-M6  | *      | 90                              | 4,5 (2,0) | 4,5 (2,0)             | 3,0 (1,5)                 | 3,5 (1,5)            | 3,5 (1,5)             | 2,5 (1,2)  | 3,0 (2,0)              |
| M12 /<br>IG-M8  |        | 100                             |           |                       |                           |                      |                       |            | 2,5 (1,5)              |
| M16 /<br>IG-M10 |        | 100                             | 3,5 (1,5) | 3,5 (1,5)             | 2,5 (1,2)                 | 3,0 (1,5)            | 3,5 (1,5)             | 2,0 (0,9)  | 2,5 (1,5)              |
| M8              | 12x80  | 80                              | 3,5 (1,5) | 3,5 (1,5)             | 2,5 (1,2)                 | 3,5 (1,5)            | 3,0 (1,5)             | 2,5 (1,2)  | 2,5 (1,5)              |
| M8 / M10/       | 16x85  | 85                              | 3,5 (1,5) | 3,0 (1,5)             | 2,0 (0,9)                 | 3,5 (1,5)            | 3,0 (1,5)             | 2,5 (1,2)  | 2,5 (1,5)              |
| IG-M6           | 16x130 | 130                             | 3,5 (1,5) | 3,0 (1,5)             | 2,0 (0,9)                 | 3,5 (1,5)            | 3,0 (1,5)             | 2,5 (1,2)  | 2,5 (1,5)              |
| M12 / M16 /     | 20x85  | 85                              |           |                       |                           |                      |                       |            |                        |
| IG-M8 /         | 20x130 | 130                             | 3,0 (1,5) | 2,5 (1,2)             | 2,0 (0,9)                 | 3,0 (1,5)            | 2,5 (1,2)             | 2,0 (0,9)  | 2,5 (1,5)              |
| IG-M10          | 20x200 | 200                             |           |                       |                           | _                    |                       |            |                        |
|                 |        |                                 | Co        | mpressive             | strength f <sub>b</sub> ≥ | 20 N/mm <sup>2</sup> | T                     |            | •                      |
| M8              | 1411   | 80                              |           |                       |                           |                      |                       |            | 4,0 (2,5)              |
| M10 /<br>IG-M6  | •      | 90                              | 6,0 (3,0) | 5,5 (2,5)             | 4,0 (2,0)                 | 5,0 (2,5)            | 5,0 (2,5)             | 3,5 (1,5)  | 4,5 (2,5)              |
| M12/<br>IG-M8   | -3     | 100                             |           |                       |                           |                      |                       |            | 4,0 (2,5)              |
| M16/<br>IG-M10  |        | 100                             | 5,0 (2,5) | 5,0 (2,5)             | 3,5 (1,5)                 | 5,0 (2,5)            | 5,0 (2,5)             | 3,5 (1,5)  | 4,0 (2,5)              |
| M8              | 12x80  | 80                              | 5,5 (2,5) | 5,0 (2,5)             | 3,5 (1,5)                 | 4,5 (2,0)            | 4,5 (2,0)             | 3,0 (1,5)  | 4,0 (2,5)              |
| M8 / M10/       | 16x85  | 85                              | 5,0 (2,5) | 4,5 (2,0)             | 3,5 (1,5)                 | 5,0 (2,5)            | 4,5 (2,0)             | 3,5 (1,5)  | 4,0 (2,5)              |
| IG-M6           | 16x130 | 130                             | 5,0 (2,5) | 4,5 (2,0)             | 3,5 (1,5)                 | 5,0 (2,5)            | 4,5 (2,0)             | 3,5 (1,5)  | 4,0 (2,5)              |
| M12 / M16 /     | 20x85  | 85                              |           |                       |                           |                      |                       |            |                        |
| IG-M8 /         | 20x130 | 130                             | 4,0 (2,0) | 4,0 (2,0)             | 3,0 (1,5)                 | 4,0 (2,0)            | 4,0 (2,0)             | 3,0 (1,5)  | 4,0 (2,5)              |
| IG-M10          | 20x200 | 200                             |           |                       |                           |                      |                       |            |                        |

Injection System VMU plus for masonry Annex C7 Performances - Calcium solid brick KS-NF Characteristic values of resistance

Values are valid for  $c_{cr}$ , values in brackets are valid for single anchors with  $c_{min}$  For  $c_{cr}$  calculation of  $V_{Rk,c}$  see ETAG 029, Annex C; values in brackets  $V_{Rk,c} = V_{Rk,b}$  for single anchors with  $c_{min}$ 

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8.



## Brick type: Calcium silicate solid brick KS-NF

Table C16: Characteristic values of resistance under tension and shear loads (continue)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |              |                       | Cha                       | aracteristic re      | esistance             |            |                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------|--------------|-----------------------|---------------------------|----------------------|-----------------------|------------|------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | , υ                             | Use category |                       |                           |                      |                       |            |                        |  |
| Anchor size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sleeve        | Effective<br>anchorage<br>depth | d/d          |                       |                           |                      | w/d<br>w/w            |            | d/d<br>w/d<br>w/w      |  |
| The second secon |               | TO TO                           | 40°C/24°C    | 80°C/50°C             | 120°C/72°C                | 40°C/24°C            | 80°C/50°C             | 120°C/72°C | All temperature ranges |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | h <sub>ef</sub>                 |              | $N_{Rk,b} = N_{Rk,p}$ | 1)                        |                      | $N_{Rk,b} = N_{Rk,p}$ | 1)         | $V_{Rk,b}^{2)3)}$      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | [mm]                            |              |                       |                           | [kN]                 |                       |            |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 | Co           | mpressive             | strength f <sub>b</sub> ≥ | 27 N/mm <sup>2</sup> |                       |            |                        |  |
| M8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 147           | 80                              |              |                       |                           |                      |                       |            | 4,5 (2,5)              |  |
| M10 / IG-M6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 90                              | 7,0 (3,5)    | 6,5 (3,0)             | 5,0 (2,5)                 | 6,0 (3,0)            | 5,5 (2,5)             | 4,0 (2,0)  | 5,5 (3,0)              |  |
| M12 / IG-M8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( <b>+</b> 8) | 100                             |              |                       |                           |                      |                       |            | 4,5 (2,5)              |  |
| M16 /<br>IG-M10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>=</b> 5    | 100                             | 6,0 (3,0)    | 5,5 (2,5)             | 4,5 (2,0)                 | 6,0 (3,0)            | 5,5 (2,5)             | 4,0 (2,0)  | 4,5 (2,5)              |  |
| M8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12x80         | 80                              | 6,5 (3,0)    | 6,0 (3,0)             | 4,5 (2,0)                 | 5,5 (2,5)            | 5,0 (2,5)             | 3,5 (1,5)  | 4,5 (2,5)              |  |
| M8 / M10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16x85         | 85                              | 5,5 (2,5)    | 5,0 (2,5)             | 4,0 (2,0)                 | 5,5 (2,5)            | 5,0 (2,5)             | 4,0 (2,0)  | 4,5 (2,5)              |  |
| IG-M6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16x130        | 130                             | 5,5 (2,5)    | 5,0 (2,5)             | 4,0 (2,0)                 | 5,5 (2,5)            | 5,0 (2,5)             | 4,0 (2,0)  | 4,5 (2,5)              |  |
| M12 / M16 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20x85         | 85                              |              |                       |                           |                      |                       |            |                        |  |
| IG-M8 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20x130        | 130                             | 5,0 (2,5)    | 4,5 (2,0)             | 3,5 (1,5)                 | 5,0 (2,5)            | 4,5 (2,0)             | 3,5 (1,5)  | 4,5 (2,5)              |  |
| IG-M10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20x200        | 200                             |              |                       |                           |                      |                       |            |                        |  |

Values are valid for  $c_{\text{cr}}$ , values in brackets are valid for single anchors with  $c_{\text{min}}$ 

#### Table C17: **Displacements**

| Anchor<br>size  | Sleeve | h <sub>ef</sub> | N    | δ <sub>N</sub> / N | δηο  | δ <sub>N∞</sub> | V    | δνο  | δν∞  |
|-----------------|--------|-----------------|------|--------------------|------|-----------------|------|------|------|
| Size            |        | [mm]            | [kN] | [mm/kN]            | [mm] | [mm]            | [kN] | [mm] | [mm] |
| M8              |        | 80              |      |                    |      |                 | 1,7  | 0,90 | 1,35 |
| M10 /<br>IG-M6  | .=:    | 90              | 2,0  |                    | 0,30 | 0,60            | 2,0  | 1,10 | 1,65 |
| M12 /<br>IG-M8  | -      | 100             |      |                    |      |                 |      |      |      |
| M16 /<br>IG-M10 | *      | 100             | 1,7  | 0.45               | 0,26 | 0,51            |      |      |      |
| M8              | 12x80  | 80              | 28   | 0,15               | 2    |                 | 1,7  | 0,90 | 1,35 |
| M8 / M10/       | 16x85  | 85              | 4 4  |                    | 0.24 | 0.40            |      |      |      |
| IG-M6           | 16x130 | 130             | 1,4  |                    | 0,21 | 0,43            |      |      |      |
| M12 / M16       | 20x85  | 85              |      |                    |      |                 |      |      |      |
| IG-M8 /         | 20x130 | 130             | 1,3  |                    | 0,19 | 0,39            |      |      |      |
| IG-M10          | 20x200 | 200             |      |                    |      |                 |      |      |      |

| Injection System VMU plus for masonry                                                                  |          |
|--------------------------------------------------------------------------------------------------------|----------|
| Performances - Calcium solid brick KS-NF Characteristic values of resistance (continue), Displacements | Annex C8 |

<sup>2)</sup> For  $c_{cr}$  calculation of  $V_{Rk,c}$  see ETAG 029, Annex C; values in brackets  $V_{Rk,c} = V_{Rk,b}$  for single anchors with  $c_{min}$  The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8



## Brick type: Calcium silicate hollow brick KSL-3DF

| Table C18: Description of                 | the brick                                          |       |
|-------------------------------------------|----------------------------------------------------|-------|
| Brick type                                | Calcium silicate hollow brick<br>KSL-3DF           | - 0-  |
| Bulk density $\rho$ [kg/dm <sup>3</sup> ] | 1,4                                                | 47.00 |
| Compressive strength $f_b \ge [N/mm^2]$   |                                                    | 200   |
| Code                                      | EN 771-2                                           |       |
| Producer (country code)                   | e.g. Wemding (DE)                                  | 100   |
| Brick dimensions [mm]                     | 240 x 175 x 113                                    |       |
| Drilling method                           | Rotary                                             |       |
| 175                                       | 95<br>54<br>95<br>14<br>14<br>14<br>32<br>14<br>44 |       |
| 100                                       | 44 14 38 17 38 14 44 16                            |       |
| 16                                        | 44 14 38 17 38 14 44 16                            |       |

Table C19: Spacing and edge distance

| Anchor size           |                    |      | All sizes               |  |  |
|-----------------------|--------------------|------|-------------------------|--|--|
| Edge distance         | Ccr                | [mm] | 100 (120) <sup>1)</sup> |  |  |
| Minimum edge distance | Cmin               | [mm] | 60                      |  |  |
| Sacrina               | S <sub>cr,II</sub> | [mm] | 240                     |  |  |
| Spacing               | S <sub>cr,⊥</sub>  | [mm] | 120                     |  |  |
| Minimum spacing       | Smin               | [mm] | 120                     |  |  |

Value in brackets for VM-SH 20x85; VM-SH 20x130 and VM-SH 20x200

Table C20: Group factor for anchor group in case of tension loading

| Configuration                        |  | with c [mm] ≥   | with s [mm] ≥ |                     |        |     |
|--------------------------------------|--|-----------------|---------------|---------------------|--------|-----|
| II: anchors placed                   |  | 60              | 120           | 4 6 - 1             | 1 - 14 | 1,5 |
| parallel to horizontal<br>joint      |  | C <sub>cr</sub> | 240           | ag,N,II             |        | 2,0 |
|                                      |  | 160             | 120           |                     | [-]    | 2,0 |
| ⊥: anchors placed                    |  | 60              | 120           |                     |        | 1,0 |
| perpendicular to<br>horizontal joint |  | C <sub>cr</sub> | 120           | -α <sub>g,N,⊥</sub> |        | 2,0 |

| njection System VMU plus for masonry                              |          |
|-------------------------------------------------------------------|----------|
| Performances - Calcium silicate hollow brick KSL-3DF              | Annex C9 |
| Description of the brick, Spacing and edge distance, Group factor |          |



#### Brick type: Calcium silicate hollow brick KSL-3DF

Table C21: Group factor for anchor group in case of shear loading parallel to free edge

| Configuration                        |        | with c [mm] ≥   | with s [mm] ≥ |                     |     |     |
|--------------------------------------|--------|-----------------|---------------|---------------------|-----|-----|
| II: anchors placed                   | Ji.    | 60              | 120           |                     |     | 1,0 |
| parallel to horizontal<br>joint      | ) V •• | 160             | 120           | α <sub>g,V,II</sub> |     | 1,6 |
|                                      |        | C <sub>cr</sub> | 240           |                     | [-] | 2,0 |
| ⊥: anchors placed                    |        | 60              | 120           |                     |     | 1,0 |
| perpendicular to<br>horizontal joint | V      | C <sub>cr</sub> | 120           | α <sub>g,V,⊥</sub>  |     | 2,0 |

Table C22: Group factor for anchor group in case of shear loading perpendicular to free edge

| Configuration                             |    | with c [mm] ≥   | with s [mm] ≥ |                      |     |     |
|-------------------------------------------|----|-----------------|---------------|----------------------|-----|-----|
| II: anchors placed parallel to horizontal |    | 60              | 120           | 11-                  |     | 1,0 |
| joint                                     | 71 | C <sub>cr</sub> | 240           | α <sub>g,∨,II</sub>  | 1.1 | 2,0 |
| 1: anchors placed                         | V  | 60              | 120           |                      | H   | 1,0 |
| perpendicular to<br>horizontal joint      | 11 | C <sub>cr</sub> | 120           | - α <sub>g,V,⊥</sub> |     | 2,0 |

Table C23: Characteristic values of resistance under tension and shear loads

| 1,4,5,5     | -      |                 | T      | 0 01 100.00                 | Cha         | racteristic re  | ietance                               |                                 |                      |           |            |           |           |            |                              |
|-------------|--------|-----------------|--------|-----------------------------|-------------|-----------------|---------------------------------------|---------------------------------|----------------------|-----------|------------|-----------|-----------|------------|------------------------------|
|             |        | a)              |        | Use category                |             |                 |                                       |                                 |                      |           |            |           |           |            |                              |
|             |        | tive<br>orage   | d/d    |                             |             | Use catego      | w/d; w/w                              |                                 |                      |           |            |           |           |            |                              |
| Anchor size | Sleeve | Sleeve          | Sleeve | Sleeve                      | size Sleeve | nor size Sleeve | e anchorage depth                     | Effective<br>anchorage<br>depth | 40°C/24°C            | 80°C/50°C | 120°C/72°C | 40°C/24°C | 80°C/50°C | 120°C/72°C | All<br>temperature<br>ranges |
|             |        | h <sub>ef</sub> |        | $N_{Rk,b} = N_{Rk,p}^{-1)}$ |             |                 | N <sub>Rk,b</sub> = N <sub>Rk,p</sub> | 1)                              | V <sub>Rk,b</sub> 4) |           |            |           |           |            |                              |
|             |        | [mm]            |        |                             |             | [kN]            |                                       |                                 |                      |           |            |           |           |            |                              |
|             |        |                 |        |                             | Compress    | ive strength    | f <sub>b</sub> ≥ 8 N/mr               | n²                              |                      |           |            |           |           |            |                              |
| M8          | 12x80  | 80              |        |                             |             | 1,5             | 1,2                                   | 0,9                             | $2,5^{2)}(0,9)^{3)}$ |           |            |           |           |            |                              |
| M8 / M10 /  | 16x85  | 85              | 1,5    | 1,5                         | 1,2         |                 | 1,5                                   | 1,2                             | $4,0^{2)}(1,5)^{3)}$ |           |            |           |           |            |                              |
| IG-M6       | 16x130 | 130             |        |                             |             |                 | 1,5                                   | 1,2                             | $4,0^{2)}(1,5)^{3)}$ |           |            |           |           |            |                              |
| M12 / M16 / | 20x85  | 85              | 4,5    |                             | P           |                 | 4.2                                   |                                 |                      |           |            |           |           |            |                              |
| IG-M8 /     | 20x130 | 130             |        | 4,0                         | 3,0         | 4,5             | 4,0                                   | 3,0                             | $4,0^{2)}(1,5)^{3)}$ |           |            |           |           |            |                              |
| IG-M10      | 20x200 | 200             |        |                             |             |                 |                                       |                                 |                      |           |            |           |           |            |                              |
|             |        |                 |        |                             | Compressi   | ive strength    | f <sub>b</sub> ≥ 12 N/m               | m²                              |                      |           |            |           |           |            |                              |
| M8          | 12x80  | 80              | 2,0    | 2,0                         | 1,5         | 2,0             | 1,5                                   | 1,2                             | $3,0^{2)}(1,2)^{3)}$ |           |            |           |           |            |                              |
| M8 / M10 /  | 16x85  | 85              | 2,0    | 2,0                         | 1,5         | 2,0             | 2,0                                   | 1,5                             | $4.5^{2)}(1.5)^{3)}$ |           |            |           |           |            |                              |
| IG-M6       | 16x130 | 130             | 2,5    | 2,5                         | 1,5         | 2,5             | 2,5                                   | 1,5                             | $4.5^{2)}(1.5)^{3)}$ |           |            |           |           |            |                              |
| M12 / M16 / | 20x85  | 85              |        |                             |             |                 |                                       |                                 |                      |           |            |           |           |            |                              |
| IG-M8 /     | 20x130 | 130             | 6,0    | 5,5                         | 4,0         | 6,0             | 5,5                                   | 4,0                             | $4,5^{2)}(1,5)^{3)}$ |           |            |           |           |            |                              |
| IG-M10      | 20x200 | 200             |        |                             |             |                 |                                       |                                 |                      |           |            |           |           |            |                              |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

#### Injection System VMU plus for masonry

Performances - Calcium silicate hollow brick KSL-3DF

Group factor, Characteristic values of resistance

Annex C10

 $V_{Rk,c,ll} = V_{Rk,b}$  valid for shear load parallel to free edge

 $V_{Rk,c,\perp} = V_{Rk,b}$  (values in brackets) valid for shear load in direction to free edge

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply V<sub>Rk,b</sub> by 0,8



Brick type: Calcium silicate hollow brick KSL-3DF

Table C24: Characteristic values of resistance under tension and shear loads (continue)

|             |                    |                            |                            | Characteristic resistance |            |                            |                          |            |                                 |  |  |
|-------------|--------------------|----------------------------|----------------------------|---------------------------|------------|----------------------------|--------------------------|------------|---------------------------------|--|--|
|             |                    | Beflective anchorage depth |                            |                           |            | Use catego                 | ry                       |            |                                 |  |  |
|             |                    |                            | d/d                        |                           |            | -                          | d/d; w/d; w/w            |            |                                 |  |  |
| Anchor size | Anchor size Sleeve |                            | 40°C/24°C                  | 80°C/50°C                 | 120°C/72°C | 40°C/24°C                  | 80°C/50°C                | 120°C/72°C | All<br>temperature<br>ranges    |  |  |
|             |                    |                            | $N_{Rk,b} = N_{Rk,p}^{-1}$ |                           |            | $N_{Rk,b} = N_{Rk,p}^{-1}$ |                          |            | V <sub>Rk,b</sub> <sup>4)</sup> |  |  |
|             |                    | [mm]                       |                            |                           |            | [kN]                       |                          |            |                                 |  |  |
|             |                    |                            |                            |                           | Compressi  | ve strength                | f <sub>b</sub> ≥ 14 N/mi | m²         |                                 |  |  |
| M8          | 12x80              | 80                         | 2,5                        | 2,5                       | 1,5        | 2,0                        | 2,0                      | 1,5        | $3,5^{2)}(1,5)^{3)}$            |  |  |
| M8 / M10 /  | 16x85              | 85                         | 2,5                        | 2,5                       | 1,5        | 2,5                        | 2,5                      | 1,5        | $6,0^{2)}(2,0)^{3)}$            |  |  |
| IG-M6       | 16x130             | 130                        | 2,5                        | 2,5                       | 2,0        | 2,5                        | 2,5                      | 2,0        | $6,0^{2)}(2,0)^{3)}$            |  |  |
| M12 / M16 / | 20x85              | 85                         |                            |                           |            |                            |                          |            | 20                              |  |  |
| IG-M8 /     | 20x130             | 130                        | 6,5                        | 6,0                       | 4,5        | 6,5                        | 6,0                      | 4,5        | $6,0^{2)}(2,0)^{3)}$            |  |  |
| IG-M10      | 20x200             | 200                        |                            |                           |            |                            |                          |            |                                 |  |  |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

Table C25: Displacements

| Anchor size | Sleeve | h <sub>ef</sub><br>[mm] | N<br>[kN] | δ <sub>N</sub> / N<br>[mm/kN] | δ <sub>N0</sub> [mm] | δ <sub>N∞</sub><br>[mm] | V<br>[kN] | δ <sub>V0</sub> | δ <sub>∨∞</sub><br>[mm] |
|-------------|--------|-------------------------|-----------|-------------------------------|----------------------|-------------------------|-----------|-----------------|-------------------------|
| M8          | 12x80  | 80                      |           |                               |                      |                         | 1,0       | 1,0             | 1,50                    |
| M8 / M10 /  | 16x85  | 85                      | 0,71      |                               | 0,64                 | 1,29                    |           |                 | "                       |
| IG-M6       | 16x130 | 130                     |           | 0.00                          |                      |                         | 1,7       | 1,9             | 2,85                    |
| M12 / M16 / | 20x85  | 85                      |           | 0,90                          |                      |                         |           |                 |                         |
| IG-M8 /     | 20x130 | 130                     | 1,86      |                               | 1,67                 | 3,34                    |           |                 |                         |
| IG-M10      | 20x200 | 200                     |           |                               |                      |                         |           |                 |                         |

Injection System VMU plus for masonry

Performance - Calcium silicate hollow brick KSL-3DF

Characteristic values of resistance, Displacements

 $V_{Rk,c,II} = V_{Rk,b}$  valid for shear load parallel to free edge

 $V_{Rk,c,\perp} = V_{Rk,b}$  (values in brackets) valid for shear load in direction to free edge

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8



Brick type: Calcium silicate hollow brick KSL-12DF

| Brick type                              | Calcium silicate hollow brick<br>KSL-12DF |      |
|-----------------------------------------|-------------------------------------------|------|
| Bulk density ρ [kg/dm³]                 | 1,4                                       | ***  |
| Compressive strength $f_b \ge [N/mm^2]$ | 10, 12 or 16                              | -56  |
| Code                                    | EN 771-2                                  |      |
| Producer (country code)                 | e.g. Wemding (DE)                         |      |
| Brick dimensions [mm]                   | 498 x 175 x 238                           | 10   |
| Drilling method                         | Rotary                                    |      |
|                                         |                                           | 17 ) |
|                                         | 2000                                      |      |

Table C27: Spacing and edge distances

| Anchor size           |                                |      | All sizes               |  |  |
|-----------------------|--------------------------------|------|-------------------------|--|--|
| Edge distance         | Ccr                            | [mm] | 100 (120) <sup>1)</sup> |  |  |
| Minimum edge distance | C <sub>min</sub> <sup>2)</sup> | [mm] | 100 (120) <sup>1)</sup> |  |  |
| Special               | S <sub>cr,II</sub>             | [mm] | 498                     |  |  |
| Spacing               | S <sub>cr,⊥</sub>              | [mm] | 238                     |  |  |
| Minimum spacing       | Smin                           | [mm] | 120                     |  |  |

Value in brackets for VM-SH 20x85 and VM-SH 20x130

Table C28: Group factor for anchor group in case of tension loading

| Configuration                             |      | with c [mm] ≥   |     |                    |     |     |
|-------------------------------------------|------|-----------------|-----|--------------------|-----|-----|
| II: anchors placed parallel to horizontal | 1 68 | 100             | 120 |                    |     | 1,0 |
| joint                                     |      | C <sub>CF</sub> | 498 | - Clg, N,II        | (1) | 2,0 |
| ⊥: anchors placed                         |      | 100             | 120 |                    | [-] | 1,0 |
| perpendicular to<br>horizontal joint      |      | C <sub>cr</sub> | 238 | α <sub>g,N,⊥</sub> | 15  | 2,0 |

## Injection System VMU plus for masonry

#### Performance - Calcium silicate hollow brick KSL-12DF

Description of the brick, Spacing and edge distances, Group factor

For V<sub>Rk,c</sub>; c<sub>min</sub> according to ETAG 029, Annex C



#### Brick type: Calcium silicate hollow brick KSL-12DF

Table C29: Group factor for anchor group in case of shear loading parallel to free edge

| Configuration                                       |     | with c [mm] ≥   | with s [mm] ≥ |                     |     | 41  |
|-----------------------------------------------------|-----|-----------------|---------------|---------------------|-----|-----|
| II: anchors placed parallel to horizontal joint     | V • | C <sub>Cf</sub> | 498           | α <sub>g,V,II</sub> |     | 2,0 |
| ⊥: anchors placed perpendicular to horizontal joint | V   | C <sub>CF</sub> | 238           | $lpha_{g,V,\perp}$  | [-] | 2,0 |

Table C30: Group factor for anchor group in case of shear load perpendicular to free edge

| Configuration                                             |       | with c [mm] ≥   | with s [mm] ≥ |                      |     |     |
|-----------------------------------------------------------|-------|-----------------|---------------|----------------------|-----|-----|
| II: anchors placed parallel to horizontal joint           | V     | C <sub>cr</sub> | 498           | α <sub>g,∨,II</sub>  |     | 2,0 |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint | V-(0) | C <sub>Cr</sub> | 238           | $\alpha_{g,V,\perp}$ | [-] | 2,0 |

Table C31: Characteristic values of resistance under tension and shear loads

|                    |             |                                 |       | Characteristic resistance                               |           |              |                          |           |                        |                              |
|--------------------|-------------|---------------------------------|-------|---------------------------------------------------------|-----------|--------------|--------------------------|-----------|------------------------|------------------------------|
|                    |             |                                 |       |                                                         |           | Use catego   | ory                      |           |                        |                              |
| Anchor size Sleeve |             | Effective<br>anchorage<br>depth | d/d   |                                                         |           |              | d/d<br>w/d<br>w/w        |           |                        |                              |
|                    | Anchor size | Sieeve                          | /е ше | 40°C/24°C                                               | 80°C/50°C | 120°C/72°C   | 40°C/24°C                | 80°C/50°C | 120°C/72°C             | All<br>temperature<br>ranges |
|                    |             | h <sub>ef</sub>                 |       | $N_{Rk,b} = N_{Rk,p}^{(1)}$ $N_{Rk,b} = N_{Rk,p}^{(1)}$ |           |              |                          |           | V <sub>Rk,b</sub> 2)3) |                              |
|                    |             | [mm]                            |       | [kN]                                                    |           |              |                          |           |                        |                              |
|                    |             |                                 |       |                                                         | Compressi | ive strength | f <sub>b</sub> ≥ 10 N/mi | m²        |                        |                              |
| M8                 | 12x80       | 80                              | 0,6   | 0,6                                                     | 0,4       | 0,5          | 0,5                      | 0,4       | 2,5                    |                              |
| M8/M10/            | 16x85       | 85                              | 0,6   | 0,6                                                     | 0,4       | 0,6          | 0,6                      | 0,4       | 5,5                    |                              |
| IG-M6              | 16x130      | 130                             | 2,5   | 2,5                                                     | 2,0       | 2,5          | 2,5                      | 2,0       | 5,5                    |                              |
| M12 / M16 /        | 20x85       | 85                              | 1,5   | 1,5                                                     | 0,9       | 1,5          | 1,5                      | 0,9       | 5,5                    |                              |
| IG-M8 /<br>IG-M10  | 20x130      | 130                             | 2,5   | 2,5                                                     | 2,0       | 2,5          | 2,5                      | 2,0       | 5,5                    |                              |
|                    |             |                                 | (     |                                                         | Compressi | ve strength  | f <sub>b</sub> ≥ 12 N/mi | m²        |                        |                              |
| M8                 | 12x80       | 80                              | 0,75  | 0,6                                                     | 0,5       | 0,6          | 0,6                      | 0,4       | 3,0                    |                              |
| M8/M10/            | 16x85       | 85                              | 0,75  | 0,6                                                     | 0,5       | 0,75         | 0,6                      | 0,5       | 6,5                    |                              |
| IG-M6              | 16x130      | 130                             | 3,0   | 3,0                                                     | 2,0       | 3,0          | 3,0                      | 2,0       | 6,5                    |                              |
| M12 / M16 /        | 20x85       | 85                              | 1,5   | 1,5                                                     | 1,2       | 1,5          | 1,5                      | 1,2       | 6,5                    |                              |
| IG-M8 /<br>IG-M10  | 20x130      | 130                             | 3,0   | 3,0                                                     | 2,0       | 3,0          | 3,0                      | 2,0       | 6,5                    |                              |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

# Performance - Calcium silicate hollow brick KSL-12DF Group factor, Characteristic values of resistance Annex C13

Calculation of V<sub>Rk,c</sub> see ETAG 029, Annex C, except for shear load parallel to free edge with c ≥ 120 mm: V<sub>Rk,c,ll</sub> = V<sub>Rk,b</sub>

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply V<sub>Rk,b</sub> by 0,8



Brick type: Calcium silicate hollow brick KSL-12DF

Table C32: Characteristic values of resistance under tension and shear loads (continue)

|                   | X      |                                 | Characteristic resistance |                       |            |              |                         |            |                                   |  |
|-------------------|--------|---------------------------------|---------------------------|-----------------------|------------|--------------|-------------------------|------------|-----------------------------------|--|
|                   |        | 50                              |                           |                       |            | Use catego   | ry                      |            |                                   |  |
| A                 |        |                                 | d/d                       |                       |            | w/d; w/w     |                         |            | d/d<br>w/d<br>w/w                 |  |
| Anchor size       | Sleeve | Effective<br>anchorage<br>depth | 40°C/24°C                 | 80°C/50°C             | 120°C/72°C | 40°C/24°C    | 80°C/50°C               | 120°C/72°C | All<br>temperature<br>ranges      |  |
|                   |        | h <sub>ef</sub>                 |                           | $N_{Rk,b} = N_{Rk,p}$ | 1)         |              | $N_{Rk,b} = N_{Rk,p}$   | 1)         | V <sub>Rk,b</sub> <sup>2)3)</sup> |  |
|                   |        | [mm]                            |                           | .0000                 |            | [kN]         |                         |            |                                   |  |
|                   |        |                                 |                           | 9                     | Compressi  | ive strength | f <sub>b</sub> ≥ 16 N/m | m²         |                                   |  |
| M8                | 12x80  | 80                              | 0,9                       | 0,9                   | 0,6        | 0,75         | 0,75                    | 0,5        | 3,5                               |  |
| M8 / M10 /        | 16x85  | 85                              | 0,9                       | 0,9                   | 0,6        | 0,9          | 0,9                     | 0,6        | 8,0                               |  |
| IG-M6             | 16x130 | 130                             | 4,0                       | 3,5                   | 2,5        | 4,0          | 3,5                     | 2,5        | 8,0                               |  |
| M12 / M16 /       | 20x85  | 85                              | 2,0                       | 2,0                   | 1,5        | 2,0          | 2,0                     | 1,5        | 8,0                               |  |
| IG-M8 /<br>IG-M10 | 20x130 | 130                             | 4,0                       | 3,5                   | 2,5        | 4,0          | 3,5                     | 2,5        | 8,0                               |  |

#### Table C33: **Displacements**

| Anchor<br>size    | Sleeve | h <sub>ef</sub><br>[mm] | N<br>[kN] | δ <sub>N</sub> / N<br>[mm/kN] | δ <sub>N0</sub><br>[mm] | δ <sub>N∞</sub><br>[mm] | V<br>[kN] | δ <sub>V0</sub><br>[mm] | δ <sub>∨∞</sub><br>[mm] |
|-------------------|--------|-------------------------|-----------|-------------------------------|-------------------------|-------------------------|-----------|-------------------------|-------------------------|
| M8                | 12x80  | 80                      | 0.26      |                               | 0,23                    | 0,46                    | 1,0       | 1,3                     | 1,95                    |
| M8/M10/           | 16x85  | 85                      | 0,26      |                               |                         |                         |           |                         |                         |
| IG-M6             | 16x130 | 130                     | 1,14      | 0,90                          | 1,03                    | 2,06                    |           |                         |                         |
| M12 / M16 /       | 20x85  | 85                      | 0,57      |                               | 0,51                    | 1,03                    | 2,3       | 2,5                     | 3,75                    |
| IG-M8 /<br>IG-M10 | 20x130 | 130                     | 1,14      |                               | 1,03                    | 2,06                    |           |                         |                         |

Injection System VMU plus for masonry

Performance - Calcium silicate hollow brick KSL-12DF

Characteristic values of resistance (continue), Displacements

Values are valid for  $c_{cr}$  and  $c_{min}$  Calculation of  $V_{Rk,c}$  see ETAG 029, Annex C, except for shear load parallel to free edge with  $c \ge 120$  mm:  $V_{Rk,c,ll} = V_{Rk,b}$  The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8



#### Brick type: Clay solid brick Mz-DF

Table C34: Description of the brick

| Brick type                              | Clay solid brick<br>Mz-DF |     |
|-----------------------------------------|---------------------------|-----|
| Bulk density ρ [kg/dm³]                 | 1,6                       |     |
| Compressive strength $f_b \ge [N/mm^2]$ | 10, 20 or 28              |     |
| Code                                    | EN 771-1                  | -   |
| Producer (country code)                 | e.g. Unipor (DE)          |     |
| Brick dimensions [mm]                   | 240 x 115 x 55            | _ [ |
| Drilling method                         | Hammer                    |     |

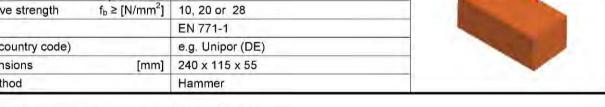



Table C35: Spacing and edge distances

| Anchor size           |      |      | Alle Größen         |   |  |
|-----------------------|------|------|---------------------|---|--|
| Edge distance         | Ccr  | [mm] | 1,5*h <sub>ef</sub> |   |  |
| Minimum edge distance | Cmin | [mm] | 60                  | * |  |
| Spacing               | Scr  | [mm] | 3*h <sub>ef</sub>   |   |  |
| Minimum spacing       | Smin | [mm] | 120                 |   |  |

Table C36: Group factor for anchor group in case of tension loading

| Configuration                | 1    | with c [mm] ≥ | with s [mm] ≥     |                     |     |     |
|------------------------------|------|---------------|-------------------|---------------------|-----|-----|
| II; anchors placed           | 60   | 120           |                   |                     | 0,7 |     |
| parallel to horizontal joint | 1.   | 1,5*hef       | 3*hef             | α <sub>g,N,II</sub> | [-] | 2,0 |
| ⊥: anchors placed            |      | 60            | 120               |                     | [-] | 0,5 |
| perpendicular to             |      | 1,5*hef       | 120               | α <sub>g,N,⊥</sub>  |     | 1,0 |
| horizontal joint             | 11.1 | 1,5*hef       | 3*h <sub>ef</sub> |                     |     | 2,0 |

Table C37: Group factor for anchor group in case of shear loading parallel to free edge

| Configura                                 | tion | with c [mm] ≥ | with s [mm] ≥     |                      |     |     |
|-------------------------------------------|------|---------------|-------------------|----------------------|-----|-----|
| II: anchors placed parallel to horizontal |      | 60            | 120               |                      |     | 0,5 |
|                                           | V •• | 90            | 120               | α <sub>g,V,II</sub>  |     | 1,1 |
| joint                                     |      | 1,5*hef       | 3*h <sub>ef</sub> |                      | [-] | 2,0 |
| ⊥: anchors placed                         |      | 60            | 120               |                      | [-] | 0,5 |
| perpendicular to                          | V :  | 1,5*hef       | 120               | $\alpha_{g,V,\perp}$ |     | 1,0 |
| horizontal joint                          |      | 1,5*hef       | 3*hef             |                      |     | 2,0 |

Table C38: Group factor for anchor group in case of shear load perpendicular to free edge

| Configura              | ition | with c [mm] ≥ | with s [mm] ≥     |                      |     |     |
|------------------------|-------|---------------|-------------------|----------------------|-----|-----|
| II: anchors placed     |       | 60            | 120               |                      |     | 0,5 |
| parallel to horizontal |       | 1,5*hef       | 120               | -α <sub>g,∨,II</sub> |     | 1,0 |
| joint                  |       | 1,5*hef       | 3*h <sub>ef</sub> |                      | [-] | 2,0 |
| ⊥: anchors placed      |       | 60            | 120               |                      | [-] | 0,5 |
| perpendicular to       | V     | 1,5*hef       | 120               | α <sub>g,V,⊥</sub>   |     | 1,0 |
| horizontal joint       |       | 1,5*hef       | 3*h <sub>ef</sub> |                      | [-] | 2,0 |

#### Injection System VMU plus for masonry

#### Performance - Clay solid brick Mz-DF

Description of the brick, Spacing and edge distances, Group factor



## Brick type: Clay solid brick Mz-DF

| Table C39: | Characteristic values of | resistance under tension ar | nd shear loads |
|------------|--------------------------|-----------------------------|----------------|
| Table C35. | Characteristic values of | resistance under tension ar |                |

| Table C3     | . C          | Tiaracteristic                  | values of resistar    | ice under tension          | and Shear loads                             |                        |  |
|--------------|--------------|---------------------------------|-----------------------|----------------------------|---------------------------------------------|------------------------|--|
|              |              |                                 |                       | Characteris                | tic resistance                              |                        |  |
|              |              | 0 8                             |                       |                            | ategory                                     |                        |  |
| Anchor size  | Sleeve       | Effective<br>Anchorage<br>depth |                       | d/d<br>w/d<br>w/w          |                                             |                        |  |
|              |              | ∢                               | 40°C/24°C             | 80°C/50°C                  | 120°C/72°C                                  | All temperature ranges |  |
|              |              | h <sub>ef</sub>                 |                       | $N_{Rk,b} = N_{Rk,p}^{1)}$ |                                             | $V_{Rk,b}^{2)3)}$      |  |
|              |              | [mm]                            |                       |                            | kN]                                         |                        |  |
|              |              |                                 |                       | Compressive stre           | ength $f_b \ge 10 \text{ N/mm}^2$           |                        |  |
| M8           |              | 80                              | 3,5 (1,5)             | 3,5 (1,5)                  | 2,5 (1,2)                                   | 3,5 (1,2)              |  |
| M10 / IG-M6  | =            | 90                              | 3,5 (1,5)             | 3,5 (1,5)                  | 3,0 (1,5)                                   | 3,5 (1,2)              |  |
| M12 / IG-M8  | -            | 100                             | 4,0 (2,0)             | 4,0 (2,0)                  | 3,5 (1,5)                                   | 3,5 (1,2)              |  |
| M16 / IG-M10 | -            | 100                             | 4,0 (2,0)             | 4,0 (2,0)                  | 3,5 (1,5)                                   | 5,5 (1,5)              |  |
| M8           | 12x80        | 80                              | 3,5 (1,5)             | 3,5 (1,5)                  | 3,0 (1,2)                                   | 3,5 (1,2)              |  |
| M8 / M10 /   | 16x85        | 85                              |                       |                            | 0 10 0                                      | 3.03 - 332 - 33        |  |
| IG-M6        | IG-M6 16x130 | 130                             |                       |                            | 3,0 (1,5)                                   |                        |  |
| M12 / M16 /  | 20x85        | 85                              | 3,5 (1,5)             | 3,5 (1,5)                  |                                             | 3,5 (1,2)              |  |
| IG-M8 /      | 20x130       | 130                             |                       |                            |                                             | 1821 - 182             |  |
| IG-M10       | 20x200       | 200                             |                       |                            |                                             |                        |  |
|              |              |                                 |                       | Compressive stre           | ngth f <sub>b</sub> ≥ 20 N/mm <sup>2</sup>  |                        |  |
| M8           | <u> </u>     | 80                              | 4,5 (2,5)             | 4,5 (2,5)                  | 4,0 (2,0)                                   | 5,0 (1,5)              |  |
| M10 / IG-M6  | -            | 90                              | 5,5 (2,5)             | 5,5 (2,5)                  | 4,5 (2,0)                                   | 5,0 (1,5)              |  |
| M12 / IG-M8  | -            | 100                             | 6,0 (3,0)             | 6,0 (3,0)                  | 5,0 (2,5)                                   | 5,0 (1,5)              |  |
| M16 / IG-M10 | -            | 100                             | 6,0 (3,0)             | 6,0 (3,0)                  | 5,0 (2,5)                                   | 8,0 (2,5)              |  |
| M8           | 12x80        | 80                              | 4,5 (2,5)             | 4,5 (2,5)                  | 4,0 (2,0)                                   | 5,0 (1,5)              |  |
| M8 / M10 /   | 16x85        | 85                              | 726 - 100 CO (100 CO) |                            | 2. 30 30                                    | 3000 3000 3000         |  |
| IG-M6        | 16x130       | 130                             |                       |                            |                                             |                        |  |
| M12 / M16 /  | 20x85        | 85                              | 5,0 (2,5)             | 5,0 (2,5)                  | 4,0 (2,0)                                   | 5,0 (1,5)              |  |
| IG-M8 /      | 20x130       | 130                             | 1250 ST-0             | × 5                        | ***                                         | \$70.5 gs              |  |
| IG-M10       | 20x200       | 200                             |                       |                            |                                             |                        |  |
|              |              |                                 |                       | Compressive stre           | ength f <sub>b</sub> ≥ 28 N/mm <sup>2</sup> |                        |  |
| M8           |              | 80                              | 5,5 (2,5)             | 5,5 (2,5)                  | 4,5 (2,5)                                   | 5,5 (2,0)              |  |
| M10 / IG-M6  |              | 90                              | 6,0 (3,0)             | 6,0 (3,0)                  | 5,0 (2,5)                                   | 5,5 (2,0)              |  |
| M12 / IG-M8  | •            | 100                             | 7,0 (3,5)             | 7,0 (3,5)                  | 6,0 (3,0)                                   | 5,5 (2,0)              |  |
| M16 / IG-M10 | -            | 100                             | 7,0 (3,5)             | 7,0 (3,5)                  | 6,0 (3,0)                                   | 9,0 (3,0)              |  |
| M8           | 12x80        | 80                              | 5,5 (2,5)             | 5,5 (2,5)                  | 4,5 (2,5)                                   | 5,5 (2,0)              |  |
| M8 / M10 /   | 16x85        | 85                              |                       |                            |                                             |                        |  |
| IG-M6        | 16x130       | 130                             | ]                     |                            |                                             |                        |  |
| M12 / M16 /  | 20x85        | 85                              | 6,0 (3,0)             | 6,0 (3,0)                  | 5,0 (2,5)                                   | 5,5 (2,0)              |  |
| IG-M8 /      | 20x130       | 130                             | 1 250 353             | 8 8                        | 8 52                                        | 32/ 35                 |  |
| IG-M10       | 20x200       | 200                             |                       |                            |                                             |                        |  |

Values are valid for c<sub>cr</sub>, values in brackets are valid for single anchors with c<sub>min</sub>

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8.

| Injection System VMU plus for masonry                                    |           |
|--------------------------------------------------------------------------|-----------|
| Performance - Clay solid brick Mz-DF Characteristic values of resistance | Annex C16 |

<sup>2)</sup> For  $c_{cr}$  calculation of  $V_{Rk,c}$  see ETAG 029, Annex C; for  $c_{min}$  values in brackets  $V_{Rk,c} = V_{Rk,b}$ 

## Page 33 of European Technical Assessment ETA-13/0909 of 8 December 2016

English translation prepared by DIBt



Brick type: Clay solid brick Mz-DF

Table C40: Displacements

| Anchor size  | Sleeve            | h <sub>ef</sub><br>[mm] | N<br>[kN] | δ <sub>N</sub> / N<br>[mm/kN] | δ <sub>N0</sub><br>[mm] | δ <sub>N∞</sub><br>[mm] | V<br>[kN] | δ <sub>V0</sub><br>[mm] | δ <sub>∨∞</sub><br>[mm] |
|--------------|-------------------|-------------------------|-----------|-------------------------------|-------------------------|-------------------------|-----------|-------------------------|-------------------------|
| M8           | -                 | 80                      | 1,3       |                               | 0,19                    | 0,39                    |           |                         |                         |
| M10 / IG-M6  | =                 | 90                      | 1,6       |                               | 0,24                    | 0,47                    | 1,9       |                         |                         |
| M12 / IG-M8  |                   | 100                     | 4.7       | (                             | 0.00                    | 0.54                    |           | 1.00                    | 4.50                    |
| M16 / IG-M10 |                   | 100                     | 1,7       |                               | 0,26                    | 0,51                    | 2,9       |                         |                         |
| M8           | 12x80             | 80                      |           | 0.45                          |                         |                         |           |                         |                         |
| M8 / M10 /   | 16x85             | 85                      |           | 0,15                          |                         |                         |           | 1,00                    | 1,50                    |
| IG-M6        | 16x130            | 130                     | 4.2       |                               | 0.40                    | 0.20                    | 4.0       |                         |                         |
| M12 / M16 /  | 20x85             | 85                      | 1,3       |                               | 0,19                    | 0,39                    | 1,9       |                         |                         |
| IG-M8 /      | G-M8 / 20x130 130 | 130                     |           |                               |                         |                         |           |                         |                         |
| IG-M10       |                   |                         |           |                               |                         |                         |           |                         |                         |

Injection System VMU plus for masonry

Performance - Clay solid brick Mz-DF

Displacements



Brick type: Clay hollow brick HLz-16-DF

Table C41: Description of the brick

| Table C41: Description of               |                             |
|-----------------------------------------|-----------------------------|
| Brick type                              | Clay hollow brick HLz-16-DF |
| Bulk density $\rho  [kg/dm^3]$          | 0,8                         |
| Compressive strength $f_b \ge [N/mm^2]$ | 6, 8, 12 or 14              |
| Code                                    | EN 771-1                    |
| Producer (country code)                 | e.g. Unipor (DE)            |
| Brick dimensions [mm]                   | 497 x 240 x 238             |
| Drilling method                         | Rotary                      |
| 14++14,5                                |                             |

Table C42: Spacing and edge distances

| Anchor size           |                                |      | All sizes               |  |
|-----------------------|--------------------------------|------|-------------------------|--|
| Edge distance         | Ccr                            | [mm] | 100 (120) <sup>1)</sup> |  |
| Minimum edge distance | C <sub>min</sub> <sup>2)</sup> | [mm] | 100 (120) <sup>1)</sup> |  |
| Casaina               | S <sub>cr,II</sub>             | [mm] | 497                     |  |
| Spacing               | S <sub>cr,⊥</sub>              | [mm] | 238                     |  |
| Minimum spacing       | Smin                           | [mm] | 100                     |  |

Value in bracket for VM-SH 20x85; VM-SH 20x130 and VM-SH 20x200

Table C43: Group factor for anchor group in case of tension loading

| Configuration                             |       | with c [mm] ≥   | with s [mm] ≥ |                     |     |     |
|-------------------------------------------|-------|-----------------|---------------|---------------------|-----|-----|
| II: anchors placed parallel to horizontal |       | C <sub>cr</sub> | 100           |                     |     | 1,3 |
| joint                                     | T. L. | C <sub>cr</sub> | 497           | α <sub>g,N,II</sub> |     | 2,0 |
| ⊥: anchors placed                         |       | C <sub>Cr</sub> | 100           | A LOS               | [-] | 1,1 |
| perpendicular to horizontal joint         | 1     | C <sub>cr</sub> | 238           | α <sub>g,N,⊥</sub>  |     | 2,0 |

# Performance - Clay hollow brick HLz-16DF Description of the brick, Spacing and edge distances, Group factor

<sup>2)</sup> For V<sub>Rk.c</sub>; c<sub>min</sub> according to ETAG 029, Annex C



#### Brick type: Clay hollow brick HLz-16-DF

Table C44: Group factor for anchor group in case of shear loading parallel to free edge

| Configura                                           | tion | with c [mm] ≥   | with s [mm] ≥ |                      |     | 41  |
|-----------------------------------------------------|------|-----------------|---------------|----------------------|-----|-----|
| II: anchors placed parallel to horizontal joint     | V •  | C <sub>cf</sub> | 497           | α <sub>g,V,II</sub>  |     | 2,0 |
| ⊥: anchors placed perpendicular to horizontal joint | V    | C <sub>CF</sub> | 238           | $\alpha_{g,V,\perp}$ | [-] | 2,0 |

Table C45: Group factor for anchor group in case of shear load perpendicular to free edge

| Configura                                                 | tion  | with c [mm] ≥   | with s [mm] ≥ |                      |     | 11.1 |
|-----------------------------------------------------------|-------|-----------------|---------------|----------------------|-----|------|
| II: anchors placed parallel to horizontal joint           | V     | C <sub>cr</sub> | 497           | α <sub>g,∨,II</sub>  |     | 2,0  |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint | V-(0) | C <sub>Cr</sub> | 238           | $\alpha_{g,V,\perp}$ | [-] | 2,0  |

Table C46: Characteristic values of resistance under tension and shear loads

| Anchor size                   | Sleeve | Effective<br>Anchorage<br>depth | Characteristic resistance Use category |                                           |                  |                               |
|-------------------------------|--------|---------------------------------|----------------------------------------|-------------------------------------------|------------------|-------------------------------|
|                               |        |                                 |                                        |                                           |                  |                               |
|                               |        |                                 | 40°C/24°C                              | 80°C/50°C                                 | 120°C/72°C       | All temperature ranges        |
|                               |        |                                 | h <sub>ef</sub>                        | $N_{Rk,b} = N_{Rk,p}^{(1)}$ [kN]          |                  |                               |
|                               |        | [mm]                            | [kN]                                   |                                           |                  |                               |
|                               |        |                                 |                                        |                                           | Compressive stre | ngth f <sub>b</sub> ≥ 6 N/mm² |
| M8                            | 12x80  | 80                              | 2,5                                    | 2,5                                       | 2,0              | 2,5                           |
| M8 / M10/ IG-M6               | 16x85  | 85                              | 2,5                                    | 2,5                                       | 2,0              | 4,5                           |
|                               | 16x130 | 130                             | 3,5                                    | 3,5                                       | 3,0              | 4,5                           |
| M12 / M16 /<br>IG-M8 / IG-M10 | 20x85  | 85                              | 2,5                                    | 2,5                                       | 2,0              | 5,0                           |
|                               | 20x130 | 130                             | 3,5                                    | 3,5                                       | 3,0              | 6,0                           |
|                               | 20x200 | 200                             | 3,5                                    | 3,5                                       | 3,0              | 6,0                           |
|                               |        |                                 | Compressive stre                       | ngth f <sub>b</sub> ≥ 8 N/mm <sup>2</sup> |                  |                               |
| M8                            | 12x80  | 80                              | 3,0                                    | 3,0                                       | 2,5              | 3,0                           |
| M8 / M10/ IG-M6               | 16x85  | 85                              | 3,0                                    | 3,0                                       | 2,5              | 5,5                           |
|                               | 16x130 | 130                             | 4,5                                    | 4,5                                       | 3,5              | 5,5                           |
| M12 / M16 /<br>IG-M8 / IG-M10 | 20x85  | 85                              | 3,0                                    | 3,0                                       | 2,5              | 6,0                           |
|                               | 20x130 | 130                             | 4,5                                    | 4,5                                       | 3,5              | 7,0                           |
|                               | 20x200 | 200                             | 4,5                                    | 4,5                                       | 3,5              | 7,0                           |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

#### Injection System VMU plus for masonry

#### Performance - Clay hollow brick HLz-16DF

Group factor, Characteristic values of resistance

Annex C19

Calculation of V<sub>Rk,c</sub> see ETAG 029, Annex C, except for shear load parallel to free edge with c ≥ 125 mm: V<sub>Rk,c,II</sub> = V<sub>Rk,b</sub>

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply V<sub>Rk,b</sub> by 0,8



Brick type: Clay hollow brick HLz-16DF

Table C47: Characteristic values of resistance under tension and shear loads (continue)

|                               |        | ľ                               |                   | Characteristic                  | resistance                                                |                        |
|-------------------------------|--------|---------------------------------|-------------------|---------------------------------|-----------------------------------------------------------|------------------------|
|                               |        | 0                               |                   | Use cat                         | COLUMN TO RECEIVE AND |                        |
| Anchor size                   | Sleeve | Effective<br>Anchorage<br>depth | d/d<br>w/d<br>w/w |                                 |                                                           | d/d<br>w/d<br>w/w      |
|                               |        | 4                               | 40°C/24°C         | 80°C/50°C                       | 120°C/72°C                                                | All temperature ranges |
|                               |        | h <sub>ef</sub>                 |                   |                                 | V <sub>Rk,b</sub> <sup>2)3)</sup>                         |                        |
|                               |        | [mm]                            |                   | $N_{Rk,b} = N_{Rk,p}^{1)}$ [kN] |                                                           | [kN]                   |
|                               |        | 200                             | Compressive strer | igth f <sub>b</sub> ≥ 12 N/mm²  | 92                                                        | W-0-                   |
| M8                            | 12x80  | 80                              | 3,5               | 3,5                             | 3,0                                                       | 4,0                    |
| M8 / M10/ IG-M6               | 16x85  | 85                              | 3,5               | 3,5                             | 3,0                                                       | 6,5                    |
| IVIO / IVI TU/ IG-IVIO        | 16x130 | 130                             | 5,0               | 5,0                             | 4,5                                                       | 6,5                    |
| M40 / M40 /                   | 20x85  | 85                              | 3,5               | 3,5                             | 3,0                                                       | 7,0                    |
| M12 / M16 /<br>IG-M8 / IG-M10 | 20x130 | 130                             | 5,0               | 5,0                             | 4,5                                                       | 9,0                    |
| 10-1010 / 10-10110            | 20x200 | 200                             | 5,0               | 5,0                             | 4,5                                                       | 9,0                    |
|                               |        |                                 | Compressive strei | ngth f <sub>b</sub> ≥ 14N/mm²   |                                                           |                        |
| M8                            | 12x80  | 80                              | 4,0               | 4,0                             | 3,0                                                       | 4,0                    |
| M8 / M10/ IG-M6               | 16x85  | 85                              | 4,0               | 4,0                             | 3,0                                                       | 6,5                    |
| IVIO / IVI TU/ IG-IVIO        | 16x130 | 130                             | 5,5               | 5,5                             | 4,5                                                       | 6,5                    |
| N40 / N40 /                   | 20x85  | 85                              | 4,0               | 4,0                             | 3,0                                                       | 7,0                    |
| M12 / M16 /<br>IG-M8 / IG-M10 | 20x130 | 130                             | 5,5               | 5,5                             | 4,5                                                       | 9,0                    |
| 13-1010 / 13-10110            | 20x200 | 200                             | 5,5               | 5,5                             | 4,5                                                       | 9,0                    |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

Table C48: Displacements

| Anchor size         | Sleeve         | h <sub>ef</sub> | N    | δ <sub>N</sub> / N | $\delta_{N0}$ | δν∞  | V    | δνο  | δ <sub>V∞</sub> |
|---------------------|----------------|-----------------|------|--------------------|---------------|------|------|------|-----------------|
|                     |                | [mm]            | [kN] | [mm/kN]            | [mm]          | [mm] | [kN] | [mm] | [mm]            |
| M8                  | 12x80          | 80              | 1 14 |                    | 0.11          | 0.22 | 1,10 | 1,20 | 1,80            |
| M8 / M10/ IG- 16x85 | 85             | 1,14            |      | 0,11               | 0,23          | 1,86 | 1.50 | 2.25 |                 |
| M6                  | 16x130         | 130             | 1,57 | 0.40               | 0,16          | 0,31 | 1,00 | 1,50 | 2,25            |
| M12 / M16 /         | 20x85          | 85              | 1,14 | 0,10               | 0,11          | 0,23 | 1,86 | 1,50 | 2,25            |
| IG-M8 / IG-         | 20x130         | 130             | 1,57 |                    | 0.16          | 0,31 | 2,57 | 2,10 | 2 15            |
| M10                 | M10 20x200 200 | 200             | 1,57 |                    | 0,16          | 0,31 | 2,57 |      | 3,15            |

Performance - Clay hollow brick HLz-16DF
Characteristic values of resistance (continue), Displacements

Annex C20

Calculation of  $V_{Rk,c}$  see ETAG 029, Annex C, except for shear load parallel to free edge with  $c \ge 125$  mm:  $V_{Rk,c,ll} = V_{Rk,b}$ 

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8



#### Brick type: Clay hollow brick Porotherm Homebric

| Brick type                              | Clay hollow brick<br>Porotherm Homebric |                |
|-----------------------------------------|-----------------------------------------|----------------|
| Bulk density ρ [kg/dm³]                 | 0,7                                     |                |
| Compressive strength $f_b \ge [N/mm^2]$ | 4, 6 or 10                              | JENERALDER FOR |
| Code                                    | EN 771-1                                |                |
| Producer (country code)                 | e.g. Wienerberger (FR)                  |                |
| Brick dimensions [mm]                   | 500 x 200 x 299                         |                |
| Drilling method                         | Rotary                                  |                |
| 200                                     | 54 40 66                                |                |
| 10,5                                    |                                         |                |

Table C50: Spacing and edge distances

| Anchor size           |                                |      | All sizes               |  |  |
|-----------------------|--------------------------------|------|-------------------------|--|--|
| Edge distance         | C <sub>cr</sub> [mm]           |      | 100 (120) <sup>1)</sup> |  |  |
| Minimum edge distance | C <sub>min</sub> <sup>2)</sup> | [mm] | 100 (120) <sup>1)</sup> |  |  |
| Species               | S <sub>cr,II</sub>             | [mm] | 500                     |  |  |
| Spacing               | S <sub>cr,1</sub>              | [mm] | 299                     |  |  |
| Minimum spacing       | Smin                           | [mm] | 100                     |  |  |

Value in brackets for VM-SH 20x85 and VM-SH 20x130

Table C51: Group factor for anchor group in case of tension loading

| Configurati                               | on    | with c [mm] ≥   | with s [mm] ≥ |                     |     |     |
|-------------------------------------------|-------|-----------------|---------------|---------------------|-----|-----|
| II: anchors placed parallel to horizontal |       | 200             | 100           |                     |     | 2,0 |
| joint                                     | 10.00 | C <sub>cr</sub> | 500           | α <sub>g,N,II</sub> | 7.1 | 2,0 |
| ⊥: anchors placed                         |       | 200             | 100           |                     | [-] | 1,2 |
| perpendicular to<br>horizontal joint      |       | C <sub>cr</sub> | 299           | -α <sub>g,N,⊥</sub> |     | 2,0 |

#### Injection System VMU plus for masonry

#### Performance - Clay hollow brick Porotherm Homebric

Description of the brick, Spacing and edge distances, Group factor

Annex C21

For V<sub>Rk.c</sub>: c<sub>min</sub> according to ETAG 029, Annex C



#### Brick type: Clay hollow brick Porotherm Homebric

Table C52: Group factor for anchor group in case of shear loading parallel to free edge

| Configura                                             | tion | with c [mm] ≥   | with s [mm] ≥ |                      |     | 41  |
|-------------------------------------------------------|------|-----------------|---------------|----------------------|-----|-----|
| II: anchors placed<br>parallel to horizontal<br>joint | V •  | C <sub>cf</sub> | 500           | α <sub>g,V,II</sub>  |     | 2,0 |
| L: anchors placed perpendicular to horizontal joint   | V    | C <sub>CF</sub> | 299           | $\alpha_{g,V,\perp}$ | [-] | 2,0 |

Table C53: Group factor for anchor group in case of shear load perpendicular to free edge

| Configurat                                          | tion  | with c [mm] ≥   | with s [mm] ≥ |                      |     |     |
|-----------------------------------------------------|-------|-----------------|---------------|----------------------|-----|-----|
| II: anchors placed parallel to horizontal joint     | V     | C <sub>cr</sub> | 500           | α <sub>g,∨,II</sub>  |     | 2,0 |
| ⊥: anchors placed perpendicular to horizontal joint | V-(0) | C <sub>Cr</sub> | 299           | $\alpha_{g,V,\perp}$ | [-] | 2,0 |

Table C54: Characteristic values of resistance under tension and shear loads

|                   |        |                                 |                    | Characteristic                | resistance        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-------------------|--------|---------------------------------|--------------------|-------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                   |        | υ 0                             | Use category       |                               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Anchor size S     | Sleeve | Effective<br>Anchorage<br>depth |                    |                               | d/d<br>w/d<br>w/w |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                   |        | ď                               | 40°C/24°C          | 80°C/50°C                     | 120°C/72°C        | w/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                   |        | h <sub>ef</sub>                 |                    | $N_{Rk,b} = N_{Rk,p}^{-1)}$   | <u> </u>          | V <sub>Rk,b</sub> <sup>2)3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                   |        | [mm]                            |                    | [kN]                          |                   | The second secon |  |  |
|                   |        |                                 | Compressive stre   | ngth f <sub>b</sub> ≥ 4 N/mm² |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| M8                | 12x80  | 80                              | 0,9                | 0,9                           | 0,75              | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| M8 / M10 / IG-M6  | 16x85  | 85                              | 0,9                | 0,9                           | 0,75              | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| M8 / M 10 / IG-M6 | 16x130 | 130                             | 1,2                | 1,2                           | 0,9               | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| M12 / M16 /       | 20x85  | 85                              | 0,9                | 0,9                           | 0,75              | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| IG-M8 / IG-M10    | 20x130 | 130                             | 1,2                | 1,2                           | 0,9               | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                   |        |                                 | Compressive street | ngth f <sub>b</sub> ≥ 6 N/mm² | ar                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| M8                | 12x80  | 80                              | 0,9                | 0,9                           | 0,9               | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| MO / MAO / IC MG  | 16x85  | 85                              | 0,9                | 0,9                           | 0,9               | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| M8 / M10 / IG-M6  | 16x130 | 130                             | 1,2                | 1,2                           | 1,2               | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| M12 / M16 /       | 20x85  | 85                              | 0,9                | 0,9                           | 0,9               | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| IG-M8 / IG-M10    | 20x130 | 130                             | 1,2                | 1,2                           | 1,2               | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

### Injection System VMU plus for masonry Performance - Clay hollow brick Porotherm Homebric Group factor, Characteristic values of resistance Annex C22

Calculation of V<sub>Rk,c</sub> see ETAG 029, Annex C, except for shear load parallel to free edge with c ≥ 200 mm: V<sub>Rk,c,ll</sub> = V<sub>Rk,b</sub>

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply V<sub>Rk,b</sub> by 0,8



#### Brick type: Clay hollow brick Porotherm Homebric

Table C55: Characteristic values of resistance under tension and shear loads (continue)

|                |        |                                 |                   | Characteristic                    | resistance |                        |  |  |
|----------------|--------|---------------------------------|-------------------|-----------------------------------|------------|------------------------|--|--|
|                |        | υ Φ                             | Use category      |                                   |            |                        |  |  |
| Anchor size    | Sleeve | Effective<br>Anchorage<br>depth |                   | d/d<br>w/d<br>w/w                 |            | d/d<br>w/d<br>w/w      |  |  |
|                |        | A                               | 40°C/24°C         | 80°C/50°C                         | 120°C/72°C | All temperature ranges |  |  |
|                |        | h <sub>ef</sub>                 |                   | V <sub>Rk,b</sub> <sup>2)3)</sup> |            |                        |  |  |
|                |        | [mm]                            |                   | [kN]                              |            |                        |  |  |
|                |        |                                 | Compressive stren | gth f <sub>b</sub> ≥10 N/mm²      |            |                        |  |  |
| M8             | 12x80  | 80                              | 1,2               | 1,2                               | 1,2        | 3,0                    |  |  |
| M8 / M10/      | 16x85  | 85                              | 1,2               | 1,2                               | 1,2        | 3,0                    |  |  |
| IG-M6          | 16x130 | 130                             | 1,5               | 1,5                               | 1,5        | 3,5                    |  |  |
| M12 / M16 /    | 20x85  | 85                              | 1,2               | 1,2                               | 1,2        | 4,0                    |  |  |
| IG-M8 / IG-M10 | 20x130 | 130                             | 1,5               | 1,5                               | 1,5        | 4,0                    |  |  |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

Table C56: Displacements

| Anchor size         | Sleeve | h <sub>ef</sub> | N    | δ <sub>N</sub> / N | $\delta_{N0}$ | δ <sub>N∞</sub> | V    | $\delta_{V0}$ | δ∨∞  |
|---------------------|--------|-----------------|------|--------------------|---------------|-----------------|------|---------------|------|
| Allerior Size       | Siccve | [mm]            | [kN] | [mm/kN]            | [mm]          | [mm]            | [kN] | [mm]          | [mm] |
| M8                  | 12x80  | 80              | 0,34 | 0.27               | 0,9           |                 |      |               |      |
| M8 / M10/           | 16x85  | 85              | 0,34 |                    | 0,27          | 0,55            | 0,9  |               |      |
| IG-M6               | 16x130 | 130             | 0,43 | 0,80               | 0,34          | 0,69            | 1,0  | 1,20          | 1,80 |
| M12 / M16 /         | 20x85  | 85              | 0,34 |                    | 0,27          | 0,55            | 4 44 |               |      |
| IG-M8 /<br>IG-M10 2 | 20×130 | 130             | 0,43 |                    | 0,34          | 0,69            | 1,14 |               |      |

Injection System VMU plus for masonry

Performance - Clay hollow brick Porotherm Homebric
Characteristic values of resistance (continue), Displacements

Annex C23

<sup>2)</sup> Calculation of V<sub>Rk,c</sub> see ETAG 029, Annex C, except for shear load parallel to free edge with c ≥ 200 mm: V<sub>Rk,c,II</sub> = V<sub>Rk,b</sub>

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8



#### Brick type: Clay hollow brick BGV Thermo Table C57: Description of the brick Clay hollow brick Brick type **BGV Thermo Bulk density** $\rho [kg/dm^3]$ 0,6 Compressive strength $f_b \ge [N/mm^2]$ 4, 6 or 10 Code EN 771-1 Producer (country code) e.g. Leroux (FR) 500 x 200 x 314 Brick dimensions [mm] Drilling method Rotary 500 0 22 61 35 200 5

Table C58: Spacing and edge distances

| Anchor size           |                                |      | All sizes               |  |  |
|-----------------------|--------------------------------|------|-------------------------|--|--|
| Edge distance         | Ccr                            | [mm] | 100 (120) <sup>1)</sup> |  |  |
| Minimum edge distance | C <sub>min</sub> <sup>2)</sup> | [mm] | 100 (120) <sup>1)</sup> |  |  |
| Special               | S <sub>cr,II</sub>             | [mm] | 500                     |  |  |
| Spacing               | S <sub>cr,⊥</sub>              | [mm] | 314                     |  |  |
| Minimum spacing       | Smin                           | [mm] | 100                     |  |  |

Values in brackets for VM-SH 20x85 and VM-SH 20x130

Table C59: Group factor for anchor group in case of tension loading

| Configuration                             | with c [mm] ≥   | with s [mm] ≥ |                     |     |     |
|-------------------------------------------|-----------------|---------------|---------------------|-----|-----|
| II: anchors placed parallel to horizontal | 200             | 100           |                     |     | 1,7 |
| joint                                     | C <sub>cr</sub> | 500           | α <sub>g,N,II</sub> | 61  | 2,0 |
| 1: anchors placed                         | 200             | 100           |                     | [-] | 1,1 |
| perpendicular to horizontal joint         | C <sub>cr</sub> | 314           | -α <sub>g,N,⊥</sub> |     | 2,0 |

| Injection System VMU plus for masonry                              |           |
|--------------------------------------------------------------------|-----------|
| Performance - Clay hollow brick BGV Thermo                         | Annex C24 |
| Description of the brick, Spacing and edge distances, Group factor |           |

For V<sub>Rk,c</sub>: c<sub>min</sub> according to ETAG 029, Annex C



#### Brick type: Clay hollow brick BGV Thermo

Table C60: Group factor for anchor group in case of shear loading parallel to free edge

| Configura                                           | tion | with c [mm] ≥   | with s [mm] ≥ |                      |     | 4   |
|-----------------------------------------------------|------|-----------------|---------------|----------------------|-----|-----|
| II: anchors placed parallel to horizontal joint     | V    | C <sub>Cf</sub> | 500           | α <sub>g,V,II</sub>  |     | 2,0 |
| ⊥: anchors placed perpendicular to horizontal joint | V    | C <sub>CF</sub> | 314           | $\alpha_{g,V,\perp}$ | [-] | 2,0 |

Table C61: Group factor for anchor group in case of shear load perpendicular to free edge

| Configurat                                                | tion  | with c [mm] ≥   | with s [mm] ≥ |                      |     |     |
|-----------------------------------------------------------|-------|-----------------|---------------|----------------------|-----|-----|
| II: anchors placed parallel to horizontal joint           | V     | C <sub>cr</sub> | 500           | $\alpha_{g,V,II}$    |     | 2,0 |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint | V-101 | C <sub>cr</sub> | 314           | $\alpha_{g,V,\perp}$ | [-] | 2,0 |

Injection System VMU plus for masonry

Performance - Clay hollow brick BGV Thermo

Group factor

Annex C25



#### Brick type: Clay hollow brick BGV Thermo

Table C62: Characteristic values of resistance under tension and shear loads

|                |        |                                 |                   | Characteristic               | resistance |                                   |  |  |
|----------------|--------|---------------------------------|-------------------|------------------------------|------------|-----------------------------------|--|--|
|                |        | a <u>o</u>                      |                   | Use category                 |            |                                   |  |  |
| Anchor size    | Sleeve | Effective<br>Anchorage<br>depth |                   | d/d<br>w/d<br>w/w            |            | d/d<br>w/d<br>w/w                 |  |  |
|                |        | 4                               | 40°C/24°C         | 80°C/50°C                    | 120°C/72°C | All temperature ranges            |  |  |
|                |        | h <sub>ef</sub>                 |                   | $N_{Rk,b} = N_{Rk,p}^{(1)}$  | 5          | V <sub>Rk,b</sub> <sup>2)3)</sup> |  |  |
|                |        | [mm]                            |                   | [kN]                         |            | [kN]                              |  |  |
|                |        |                                 | Compressive strer | gth f <sub>b</sub> ≥ 4 N/mm² |            |                                   |  |  |
| M8             | 12x80  | 80                              | 0,6               | 0,6                          | 0,6        | 2,0                               |  |  |
| M8 / M10/      | 16x85  | 85                              | 0,6               | 0,6                          | 0,6        | 2,0                               |  |  |
| IG-M6          | 16x130 | 130                             | 1,2               | 1,2                          | 0,9        | 2,5                               |  |  |
| M12 / M16 /    | 20x85  | 85                              | 0,6               | 0,6                          | 0,6        | 2,5                               |  |  |
| IG-M8 / IG-M10 | 20x130 | 130                             | 1,2               | 1,2                          | 0,9        | 2,5                               |  |  |
|                |        |                                 | Compressive strer | ngth f <sub>b</sub> ≥6 N/mm² |            | 100                               |  |  |
| M8             | 12x80  | 80                              | 0,9               | 0,9                          | 0,75       | 2,5                               |  |  |
| M8 / M10/      | 16x85  | 85                              | 0,9               | 0,9                          | 0,75       | 2,5                               |  |  |
| IG-M6          | 16x130 | 130                             | 1,5               | 1,5                          | 1,2        | 3,0                               |  |  |
| M12 / M16 /    | 20x85  | 85                              | 0,9               | 0,9                          | 0,75       | 3,0                               |  |  |
| IG-M8 / IG-M10 | 20x130 | 130                             | 1,5               | 1,5                          | 1,2        | 3,0                               |  |  |
|                |        |                                 | Compressive stren | gth f <sub>b</sub> ≥10 N/mm² |            |                                   |  |  |
| M8             | 12x80  | 80                              | 0,9               | 0,9                          | 0,9        | 3,5                               |  |  |
| M8 / M10/      | 16x85  | 85                              | 0,9               | 0,9                          | 0,9        | 3,5                               |  |  |
| IG-M6          | 16x130 | 130                             | 2,0               | 2,0                          | 1,5        | 4,0                               |  |  |
| M12 / M16 /    | 20x85  | 85                              | 0,9               | 0,9                          | 0,9        | 4,0                               |  |  |
| IG-M8 / IG-M10 | 20x130 | 130                             | 2,0               | 2,0                          | 1,5        | 4,0                               |  |  |

<sup>1)</sup> Values are valid for c<sub>cr</sub> and c<sub>min</sub>

Table C63: Displacements

| Anchor size    | Sleeve | h <sub>ef</sub><br>[mm] | N<br>[kN] | δ <sub>N</sub> / N<br>[mm/kN] | δ <sub>N0</sub><br>[mm] | δ <sub>N∞</sub><br>[mm] | V<br>[kN] | δ <sub>V0</sub><br>[mm] | δ <sub>V∞</sub><br>[mm] |
|----------------|--------|-------------------------|-----------|-------------------------------|-------------------------|-------------------------|-----------|-------------------------|-------------------------|
| М8             | 12x80  | 80                      | 0.26      |                               | 0.24                    | 0.44                    | 0.7       |                         |                         |
| M8 / M10/      | 16x85  | 85                      | 0,26      |                               | 0,21                    | 0,41                    | 0,7       |                         |                         |
| IG-M6          | 16x130 | 130                     | 0,43      | 0,80                          | 0,34                    | 0,69                    |           | 1,00                    | 1,50                    |
| M12 / M16 /    | 20x85  | 85                      | 0,26      |                               | 0,21                    | 0,41                    | 0,86      |                         |                         |
| IG-M8 / IG-M10 | 20x130 | 130                     | 0,43      |                               | 0,34                    | 0,69                    |           |                         |                         |

| Injection System VMU plus for masonry                                                         |           |
|-----------------------------------------------------------------------------------------------|-----------|
| Performance - Clay hollow brick BGV Thermo Characteristic values of resistance, Displacements | Annex C26 |

<sup>2)</sup> Calculation of V<sub>Rk,c</sub> see ETAG 029, Annex C, except for shear load parallel to free edge with c ≥ 250 mm: V<sub>Rk,c,II</sub> = V<sub>Rk,b</sub>

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8



#### Brick type: Clay hollow brick Calibric R+

| Table C64: Description of                 | the brick                     |
|-------------------------------------------|-------------------------------|
| Brick type                                | Clay hollow brick Calibric R+ |
| Bulk density $\rho$ [kg/dm <sup>3</sup> ] | 0,6                           |
| Compressive strength $f_b \ge [N/mm^2]$   | 6, 9 or 12                    |
| Code                                      | EN 771-1                      |
| Producer (country code)                   | e.g. Terreal (FR)             |
| Brick dimensions [mm]                     | 500 x 200 x 314               |
| Drilling method                           | Rotary                        |
| V                                         | 6-4                           |
|                                           | 14 40 5                       |
|                                           | 14 40 5<br>86 20              |
|                                           | 14 40 5<br>86 20              |
|                                           |                               |
| 200                                       |                               |
| 200                                       |                               |
| 200                                       |                               |
| 200                                       |                               |

Table C65: Spacing and edge distances

| Anchor size           |                                |      | All sizes               |     |
|-----------------------|--------------------------------|------|-------------------------|-----|
| Edge distance         | Ccr                            | [mm] | 100 (120) <sup>1)</sup> |     |
| Minimum edge distance | C <sub>min</sub> <sup>2)</sup> | [mm] | 100 (120) <sup>1)</sup> | H H |
| Capalag               | S <sub>cr,II</sub>             | [mm] | 500                     |     |
| Spacing               | S <sub>cr,1</sub>              | [mm] | 314                     |     |
| Minimum spacing       | Smin                           | [mm] | 100                     |     |

Value in brackets for VM-SH 20x85 and VM-SH 20x130

Table C66: Group factor for anchor group in case of tension loading

| Configuration                             | with c [mm] ≥   | with s [mm] ≥ |                     |     |     |
|-------------------------------------------|-----------------|---------------|---------------------|-----|-----|
| II: anchors placed parallel to horizontal | 175             | 100           |                     |     | 1,7 |
| joint                                     | C <sub>cr</sub> | 500           | α <sub>g,N,II</sub> | f 1 | 2,0 |
| 1: anchors placed                         | 175             | 100           |                     | [-] | 1,0 |
| perpendicular to horizontal joint         | C <sub>cr</sub> | 314           | α <sub>g,N,⊥</sub>  |     | 2,0 |

#### Injection System VMU plus for masonry

#### Performance - Clay hollow brick Calibric R+

Description of the brick, Spacing and edge distances, Group factor

Annex C27

For V<sub>Rk,c</sub>: c<sub>min</sub> according to ETAG 029, Annex C



#### Brick type: Clay hollow brick Calibric R+

Table C67: Group factor for anchor group in case of shear loading parallel to free edge

| Configura                                             | tion | with c [mm] ≥   | with s [mm] ≥ |                      |     | 41  |
|-------------------------------------------------------|------|-----------------|---------------|----------------------|-----|-----|
| II: anchors placed<br>parallel to horizontal<br>joint | V •  | C <sub>Cf</sub> | 500           | α <sub>g,V,II</sub>  |     | 2,0 |
| L: anchors placed perpendicular to horizontal joint   | V    | C <sub>CF</sub> | 314           | $\alpha_{g,V,\perp}$ | [-] | 2,0 |

Table C68: Group factor for anchor group in case of shear load perpendicular to free edge

| Configura                                                 | tion  | with c [mm] ≥   | with s [mm] ≥ |                      |     |     |
|-----------------------------------------------------------|-------|-----------------|---------------|----------------------|-----|-----|
| II: anchors placed parallel to horizontal joint           | V     | C <sub>cr</sub> | 500           | α <sub>g,∨,II</sub>  |     | 2,0 |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint | V-(0) | C <sub>Cr</sub> | 314           | $\alpha_{g,V,\perp}$ | [-] | 2,0 |

Table C69: Characteristic values of resistance under tension and shear loads

|                    |        |                                 |                   | Characteristic               | resistance |                                   |  |
|--------------------|--------|---------------------------------|-------------------|------------------------------|------------|-----------------------------------|--|
|                    |        | υ 0                             |                   | egory                        |            |                                   |  |
| Anchor size Sleeve | Sleeve | Effective<br>Anchorage<br>depth | d/d<br>w/d<br>w/w |                              |            | d/d<br>w/d<br>w/w                 |  |
|                    |        | d                               | 40°C/24°C         | 80°C/50°C                    | 120°C/72°C | All temperature ranges            |  |
|                    |        | h <sub>ef</sub>                 |                   | $N_{Rk,b} = N_{Rk,p}^{1)}$   |            | V <sub>Rk,b</sub> <sup>2)3)</sup> |  |
|                    |        | [mm]                            | [kN]              |                              |            | [kN]                              |  |
|                    |        |                                 | Compressive strer | ngth f <sub>b</sub> ≥6 N/mm² |            |                                   |  |
| M8                 | 12x80  | 80                              | 0,9               | 0,9                          | 0,75       | 3,0                               |  |
| M8 / M10/          | 16x85  | 85                              | 0,9               | 0,9                          | 0,75       | 4,0                               |  |
| IG-M6              | 16x130 | 130                             | 1,2               | 1,2                          | 0,9        | 4,0                               |  |
| M12 / M16 /        | 20x85  | 85                              | 0,9               | 0,9                          | 0,75       | 6,0                               |  |
| IG-M8 / IG-M10     | 20x130 | 130                             | 1,2               | 1,2                          | 0,9        | 6,0                               |  |
|                    |        |                                 | Compressive strer | ngth f <sub>b</sub> ≥9 N/mm² | ii:        |                                   |  |
| M8                 | 12x80  | 80                              | 1,2               | 1,2                          | 0,9        | 3,5                               |  |
| MR / MAD/IC MG     | 16x85  | 85                              | 1,2               | 1,2                          | 0,9        | 5,0                               |  |
| M8 / M10/ IG-M6    | 16x130 | 130                             | 1,5               | 1,5                          | 1,2        | 5,0                               |  |
| M12/M16/           | 20x85  | 85                              | 1,2               | 1,2                          | 0,9        | 7,5                               |  |
| IG-M8 / IG-M10     | 20x130 | 130                             | 1,5               | 1,5                          | 1,2        | 7,5                               |  |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

### Injection System VMU plus for masonry Performance - Clay hollow brick Calibric R+ Group factor, Characteristic values of resistance Annex C28

Calculation of V<sub>Rk,c</sub> see ETAG 029, Annex C, except for shear load parallel to free edge with c ≥ 250 mm: V<sub>Rk,c,II</sub> = V<sub>Rk,b</sub>

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8



Brick type: Clay hollow brick Calibric R+

Table C70: Characteristic values of resistance under tension and shear load (continue)

|                |        |                                 | Characteristic resistance |                              |            |                        |  |  |  |
|----------------|--------|---------------------------------|---------------------------|------------------------------|------------|------------------------|--|--|--|
|                |        | . 0                             |                           | Use category                 |            |                        |  |  |  |
| Anchor size    | Sleeve | Effective<br>Anchorage<br>depth |                           | d/d<br>w/d<br>w/w            |            |                        |  |  |  |
|                |        | 4                               | 40°C/24°C                 | 80°C/50°C                    | 120°C/72°C | All temperature ranges |  |  |  |
|                |        | h <sub>ef</sub>                 |                           | $V_{Rk,b}^{2)3)}$            |            |                        |  |  |  |
|                |        | [mm]                            |                           | [kN]                         |            |                        |  |  |  |
|                |        |                                 | Compressive stren         | gth f <sub>b</sub> ≥12 N/mm² |            |                        |  |  |  |
| M8             | 12x80  | 80                              | 1,2                       | 1,2                          | 0,9        | 4,0                    |  |  |  |
| M8 / M10/      | 16x85  | 85                              | 1,2                       | 1,2                          | 0,9        | 5,5                    |  |  |  |
| IG-M6          | 16x130 | 130                             | 1,5                       | 1,5                          | 1,2        | 5,5                    |  |  |  |
| M12 / M16 /    | 20x85  | 85                              | 1,2                       | 1,2                          | 0,9        | 8,5                    |  |  |  |
| IG-M8 / IG-M10 | 20x130 | 130                             | 1,5                       | 1,5                          | 1,2        | 8,5                    |  |  |  |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

#### Table C71: Displacements

| Anchor size    | Sleeve | h <sub>ef</sub><br>[mm] | N<br>[kN] | δ <sub>N</sub> / N<br>[mm/kN] | δ <sub>N0</sub><br>[mm] | δ <sub>N∞</sub><br>[mm] | V<br>[kN] | δ <sub>V0</sub><br>[mm] | δ <sub>V∞</sub><br>[mm] |
|----------------|--------|-------------------------|-----------|-------------------------------|-------------------------|-------------------------|-----------|-------------------------|-------------------------|
| M8             | 12x80  | 80                      | 0.24      |                               | 0.07                    | 0.55                    | 1,0       | 1,10                    | 1,65                    |
| M8 / M10/ IG-  | 16x85  | 85                      | 0,34      |                               | 0,27                    | 0,55                    | 4.40      |                         |                         |
| M6             | 16x130 | 130                     | 0,43      | 0,80                          | 0,34                    | 0,69                    | 1,43      |                         |                         |
| M12 / M16 /    | 20x85  | 85                      | 0,34      |                               | 0,27                    | 0,55                    | 2.44      | 2,0                     | 3,0                     |
| IG-M8 / IG-M10 | 20x130 | 130                     | 0,43      |                               | 0,34                    | 0,69                    | 2,14      |                         |                         |

Injection System VMU plus for masonry

Performance - Clay hollow brick Calibric R+
Characteristic values of resistance, Displacements

Annex C29

<sup>2)</sup> Calculation of V<sub>Rk,c</sub> see ETAG 029, Annex C, except for shear load parallel to free edge with c ≥ 250 mm: V<sub>Rk,c,II</sub> = V<sub>Rk,b</sub>

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8



### Brick type: Clay hollow brick Urbanbric Table C72: Description of the brick

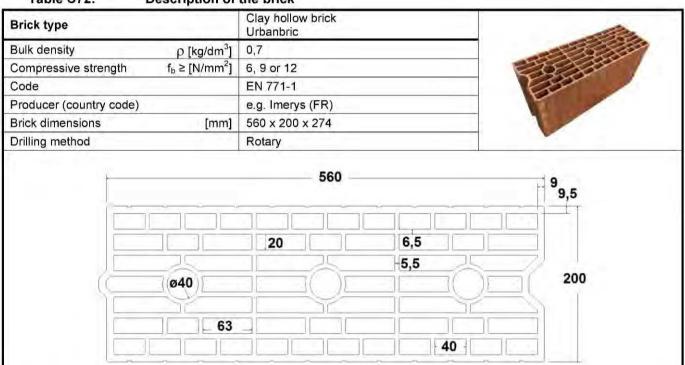



Table C73: Spacing and edge distances

| Anchor size           |                                |      | All sizes               |  |
|-----------------------|--------------------------------|------|-------------------------|--|
| Edge distance         | Ccr                            | [mm] | 100 (120) <sup>1)</sup> |  |
| Minimum edge distance | C <sub>min</sub> <sup>2)</sup> | [mm] | 100 (120) <sup>1)</sup> |  |
| Caralina              | S <sub>cr,II</sub>             | [mm] | 560                     |  |
| Spacing               | S <sub>cr.</sub>               | [mm] | 274                     |  |
| Minimum spacing       | Smin                           | [mm] | 100                     |  |

Value in brackets for VM-SH 20x85 and VM-SH 20x130

Table C74: Group factor for anchor group in case of tension loading

| Configuration                             |   | with c [mm] ≥   | with s [mm] ≥ |                     |     |     |
|-------------------------------------------|---|-----------------|---------------|---------------------|-----|-----|
| II: anchors placed parallel to horizontal |   | 185             | 100           |                     |     | 1,9 |
| joint                                     | 1 | C <sub>cr</sub> | 560           | α <sub>g,N,II</sub> | [-] | 2,0 |
| L: anchors placed                         |   | 185             | 100           |                     | l-1 | 1,1 |
| perpendicular to<br>horizontal joint      |   | C <sub>cr</sub> | 274           | α <sub>g,N,⊥</sub>  |     | 2,0 |

| Injection System VMU plus for masonry                              |           |
|--------------------------------------------------------------------|-----------|
| Performance - Clay hollow brick Urbanbric                          | Annex C30 |
| Description of the brick, Spacing and edge distances, Group factor |           |

<sup>&</sup>lt;sup>2)</sup> For V<sub>Rk,c</sub>: c<sub>min</sub> according to ETAG 029, Annex C



#### Brick type: Clay hollow brick Urbanbric

Table C75: Group factor for anchor group in case of shear loading parallel to free edge

| Configura                                             | tion | with c [mm] ≥   | with s [mm] ≥ |                      |     | 11  |
|-------------------------------------------------------|------|-----------------|---------------|----------------------|-----|-----|
| II: anchors placed<br>parallel to horizontal<br>joint | V •  | C <sub>Cf</sub> | 560           | α <sub>g,V,II</sub>  |     | 2,0 |
| L: anchors placed perpendicular to horizontal joint   | V    | C <sub>Cf</sub> | 274           | $\alpha_{g,V,\perp}$ | [-] | 2,0 |

Table C76: Group factor for anchor groups in case of shear load perpendicular to free edge

| Configuration                                             |       | with c [mm] ≥   | with s [mm] ≥ |                      |     |     |
|-----------------------------------------------------------|-------|-----------------|---------------|----------------------|-----|-----|
| II: anchors placed parallel to horizontal joint           | V     | C <sub>cr</sub> | 560           | α <sub>g,V,II</sub>  |     | 2,0 |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint | V-(0) | C <sub>Cr</sub> | 274           | $\alpha_{g,V,\perp}$ | [-] | 2,0 |

Table C77: Characteristic values of resistance under tension and shear load

|                   |        |                                 |                   | Characteristic               | resistance |                                   |  |  |  |
|-------------------|--------|---------------------------------|-------------------|------------------------------|------------|-----------------------------------|--|--|--|
|                   |        | υ 0                             | Use category      |                              |            |                                   |  |  |  |
| Anchor size Sleev | Sleeve | Effective<br>Anchorage<br>depth |                   | d/d<br>w/d<br>w/w            |            | d/d<br>w/d<br>w/w                 |  |  |  |
|                   |        | ď                               | 40°C/24°C         | 80°C/50°C                    | 120°C/72°C | All temperature ranges            |  |  |  |
|                   |        | hef                             |                   | $N_{Rk,b} = N_{Rk,p}^{-1)}$  |            | V <sub>Rk,b</sub> <sup>2)3)</sup> |  |  |  |
|                   |        | [mm]                            |                   | [kN]                         |            |                                   |  |  |  |
|                   |        |                                 | Compressive stree | ngth f <sub>b</sub> ≥6 N/mm² |            |                                   |  |  |  |
| M8                | 12x80  | 80                              | 0,9               | 0,9                          | 0,75       | 3,0                               |  |  |  |
| M8 / M10/         | 16x85  | 85                              | 0,9               | 0,9                          | 0,75       | 3,0                               |  |  |  |
| IG-M6             | 16x130 | 130                             | 2,0               | 2,0                          | 1,5        | 3,0                               |  |  |  |
| M12 / M16 /       | 20x85  | 85                              | 0,9               | 0,9                          | 0,75       | 3,5                               |  |  |  |
| IG-M8 / IG-M10    | 20x130 | 130                             | 2,0               | 2,0                          | 1,5        | 3,5                               |  |  |  |
|                   |        |                                 | Compressive strer | ngth f <sub>b</sub> ≥9 N/mm² |            |                                   |  |  |  |
| M8                | 12x80  | 80                              | 0,9               | 0,9                          | 0,9        | 4,0                               |  |  |  |
| 48 / M40/10 MC    | 16x85  | 85                              | 0,9               | 0,9                          | 0,9        | 4,0                               |  |  |  |
| M8 / M10/ IG-M6   | 16x130 | 130                             | 2,5               | 2,5                          | 2,0        | 4,0                               |  |  |  |
| M12 / M16 /       | 20x85  | 85                              | 0,9               | 0,9                          | 0,9        | 4,5                               |  |  |  |
| IG-M8 / IG-M10    | 20x130 | 130                             | 2,5               | 2,5                          | 2,0        | 4,5                               |  |  |  |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

## Injection System VMU plus for masonry Performance - Clay hollow brick Urbanbric Group factor, Characteristic values of resistance Annex C31

Calculation of V<sub>Rk,c</sub> see ETAG 029, Annex C, except for shear load parallel to free edge with c ≥ 190 mm: V<sub>Rk,c,ll</sub> = V<sub>Rk,b</sub>

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8



#### Brick type: Clay hollow brick Urbanbric

Table C78: Characteristic values of resistance under tension and shear load (continue)

|                |        |                                 | Characteristic resistance |                              |            |                        |  |  |  |
|----------------|--------|---------------------------------|---------------------------|------------------------------|------------|------------------------|--|--|--|
|                |        | . 0                             |                           | Use category                 |            |                        |  |  |  |
| Anchor size    | Sleeve | Effective<br>Anchorage<br>depth |                           | d/d<br>w/d<br>w/w            |            |                        |  |  |  |
|                |        | 4                               | 40°C/24°C                 | 80°C/50°C                    | 120°C/72°C | All temperature ranges |  |  |  |
|                |        | h <sub>ef</sub>                 |                           | $V_{Rk,b}^{2)3)}$            |            |                        |  |  |  |
|                |        | [mm]                            |                           | [kN]                         |            |                        |  |  |  |
|                |        |                                 | Compressive stren         | gth f <sub>b</sub> ≥12 N/mm² |            |                        |  |  |  |
| M8             | 12x80  | 80                              | 1,2                       | 1,2                          | 0,9        | 4,5                    |  |  |  |
| M8 / M10/      | 16x85  | 85                              | 1,2                       | 1,2                          | 0,9        | 4,5                    |  |  |  |
| IG-M6          | 16x130 | 130                             | 3,0                       | 3,0                          | 2,5        | 4,5                    |  |  |  |
| M12 / M16 /    | 20x85  | 85                              | 1,2                       | 1,2                          | 0,9        | 5,0                    |  |  |  |
| IG-M8 / IG-M10 | 20x130 | 130                             | 3,0                       | 3,0                          | 2,5        | 5,0                    |  |  |  |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

#### Table C79: Displacements

| Anchereize        | Classics           | h <sub>ef</sub> | N    | δ <sub>N</sub> / N | $\delta_{\text{N0}}$ | δ <sub>N∞</sub> | V    | $\delta_{V0}$ | δ <sub>V∞</sub> |
|-------------------|--------------------|-----------------|------|--------------------|----------------------|-----------------|------|---------------|-----------------|
| Anchor size       | Anchor size Sleeve | [mm]            | [kN] | [mm/kN]            | [mm]                 | [mm]            | [kN] | [mm]          | [mm]            |
| M8                | 12x80              | 80              | 0.24 |                    | 0.07                 | 0.55            |      |               |                 |
| M8 / M10/ IG-     | 16x85              | 85              | 0,34 |                    | 0,27                 | 0,55            | 1,30 |               |                 |
| M6                | 16x130             | 130             | 0,86 | 0,80               | 0,69                 | 1,37            |      | 1,00          | 1,50            |
| M12 / M16 /       | 20x85              | 85              | 0,34 |                    | 0,27                 | 0,55            | 4.40 |               |                 |
| IG-M8 /<br>IG-M10 | 20x130             | 130             | 0,86 |                    | 0,69                 | 1,37            | 1,43 |               |                 |

Injection System VMU plus for masonry

Performance - Clay hollow brick Urbanbric
Characteristic values of resistance, Displacements

Annex C32

Calculation of  $V_{Rk,c}$  see ETAG 029, Annex C, except for shear load parallel to free edge with  $c \ge 190$  mm:  $V_{Rk,c,ll} = V_{Rk,b}$ 

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8



#### Brick type: Clay hollow brick Brique creuse C40

Table C80: Description of the brick

| Brick type                                | Clay hollow brick<br>Brique creuse C40 |
|-------------------------------------------|----------------------------------------|
| Bulk density $\rho$ [kg/dm <sup>3</sup> ] | 0,7                                    |
| Compressive strength $f_b \ge [N/mm^2]$   | 4, 8 or 12                             |
| Code                                      | EN 771-1                               |
| Producer (country code)                   | e.g. Terreal (FR)                      |
| Brick dimensions [mm]                     | 500 x 200 x 200                        |
| Drilling method                           | Rotary                                 |



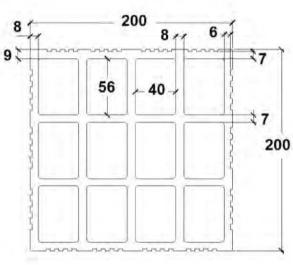



Table C81: Spacing and edge distances

| Anchor size           |                                |      | All sizes               |  |
|-----------------------|--------------------------------|------|-------------------------|--|
| Edge distance         | Cor                            | [mm] | 100 (120) <sup>1)</sup> |  |
| Minimum edge distance | C <sub>min</sub> <sup>2)</sup> | [mm] | 100 (120) <sup>1)</sup> |  |
| Casalas               | S <sub>cr,II</sub>             | [mm] | 500                     |  |
| Spacing               | S <sub>cr,1</sub>              | [mm] | 200                     |  |
| Minimum spacing       | Smin                           | [mm] | 200                     |  |

Values in brackets for VM-SH 20x85 and VM-SH 20x130

Table C82: Group factor for anchor group in case of tension loading

| Configura                                                 | ition | with c [mm] ≥   | with s [mm] ≥ |                     |     |     |
|-----------------------------------------------------------|-------|-----------------|---------------|---------------------|-----|-----|
| II: anchors placed parallel to horizontal joint           | ••    | C <sub>Cr</sub> | 200           | α <sub>g,N,II</sub> |     | 2,0 |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint |       | C <sub>cr</sub> | 200           | α <sub>g,N,⊥</sub>  | [-] | 2,0 |

#### Injection System VMU plus for masonry

#### Performance - Clay hollow brick Brique creuse C40

Description of the brick, Spacing and edge distances, Group factor

Annex C33

<sup>2)</sup> For V<sub>Rk.c</sub>: c<sub>min</sub> according to ETAG 029, Annex C



#### Brick type: Clay hollow brick Brique creuse C40

Table C83: Group factor for anchor group in case of shear loading parallel to free edge

| Configura                                           | tion | with c [mm] ≥   | with s [mm] ≥ |                    | 1 - 1 |     |
|-----------------------------------------------------|------|-----------------|---------------|--------------------|-------|-----|
| II: anchors placed parallel to horizontal joint     | V •  | C <sub>cr</sub> | 500           | - ag,v,ii          |       | 2,0 |
| ⊥: anchors placed perpendicular to horizontal joint | V    | C <sub>CF</sub> | 200           | α <sub>g,V,⊥</sub> | [-]   | 2,0 |

Table C84: Group factor for anchor group in case of shear load perpendicular to free edge

| Configura                                                 | tion | with c [mm] ≥   | with s [mm] ≥ |                      |     |     |
|-----------------------------------------------------------|------|-----------------|---------------|----------------------|-----|-----|
| II: anchors placed parallel to horizontal joint           | V    | C <sub>cr</sub> | 500           | α <sub>g,∨,∥</sub>   |     | 2,0 |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint | V    | C <sub>Cr</sub> | 200           | $\alpha_{g,V,\perp}$ | [-] | 2,0 |

Table C85: Characteristic values of resistance under tension and shear load

|                |                 |                                 |                            | Characteristic                            | resistance |                                   |  |  |  |
|----------------|-----------------|---------------------------------|----------------------------|-------------------------------------------|------------|-----------------------------------|--|--|--|
|                |                 | ο υ                             | Use category               |                                           |            |                                   |  |  |  |
| Anchor size    | Sleeve          | Effective<br>Anchorage<br>depth |                            | d/d<br>w/d<br>w/w                         |            | d/d<br>w/d<br>w/w                 |  |  |  |
|                |                 | ď                               | 40°C/24°C                  | 80°C/50°C                                 | 120°C/72°C | All temperature ranges            |  |  |  |
|                |                 | h <sub>ef</sub>                 | $N_{Rk,b} = N_{Rk,p}^{-1}$ |                                           |            | V <sub>Rk,b</sub> <sup>2)3)</sup> |  |  |  |
|                |                 | [mm]                            |                            | [kN]                                      |            | [kN]                              |  |  |  |
|                |                 |                                 | Compressive stree          | ngth f <sub>b</sub> ≥ 4 N/mm <sup>2</sup> |            |                                   |  |  |  |
| M8             | 12x80           | 80                              |                            |                                           |            |                                   |  |  |  |
| M8 / M10/      | 16x85           | 85                              |                            |                                           |            |                                   |  |  |  |
| IG-M6          | 16x130          | 130                             | 0,6                        | 0,6                                       | 0,6        | 0,9                               |  |  |  |
| M12/M16/       | 20x85           | 85                              |                            |                                           |            |                                   |  |  |  |
| IG-M8 / IG-M10 | 20x130          | 130                             |                            |                                           |            |                                   |  |  |  |
|                |                 |                                 | Compressive strer          | ngth f <sub>b</sub> ≥8 N/mm²              | 97         | · ·                               |  |  |  |
| M8             | 12x80           | 80                              |                            |                                           |            |                                   |  |  |  |
| M8 / M10/      | 16x85           | 85                              |                            |                                           | H 8 9 10 1 |                                   |  |  |  |
|                | 16x130          | 130                             | 0,9                        | 0,9                                       | 0.75       | 1,2                               |  |  |  |
| M12/M16/       | 22/22 17 720 77 | 85                              |                            |                                           |            |                                   |  |  |  |
| IG-M8 / IG-M10 | 20x130          | 130                             |                            |                                           |            |                                   |  |  |  |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

2) Calculation of V<sub>Rk,c</sub> see ETAG 029, Annex C

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8

| Injection System VMU plus for masonry             |           |
|---------------------------------------------------|-----------|
| Performance - Clay hollow brick Brique creuse C40 | Annex C34 |
| Group factor, Characteristic values of resistance |           |



Brick type: Clay hollow brick Brique creuse C40

Table C86: Characteristic values of resistance under tension and shear load (continue)

|                |        |                                 |                   | Characteristic               | resistance |                                   |  |  |
|----------------|--------|---------------------------------|-------------------|------------------------------|------------|-----------------------------------|--|--|
|                |        | υ <u>Φ</u>                      |                   | Use category                 |            |                                   |  |  |
| Anchor size    | Sleeve | Effective<br>Anchorage<br>depth |                   | d/d<br>w/d<br>w/w            |            | d/d<br>w/d<br>w/w                 |  |  |
|                |        | A                               | 40°C/24°C         | 80°C/50°C                    | 120°C/72°C | All temperature ranges            |  |  |
|                |        | h <sub>ef</sub>                 |                   | $N_{Rk,b} = N_{Rk,p}^{-1}$   |            | V <sub>Rk,b</sub> <sup>2)3)</sup> |  |  |
|                |        | [mm]                            |                   | [kN]                         |            | [kN]                              |  |  |
|                |        |                                 | Compressive stren | gth f <sub>b</sub> ≥12 N/mm² |            |                                   |  |  |
| M8             | 12x80  | 80                              |                   |                              |            |                                   |  |  |
| M8 / M10/      | 16x85  | 85                              |                   |                              |            |                                   |  |  |
| IG-M6          | 16x130 | 130                             | 1,2               | 1,2                          | 0,9        | 1,5                               |  |  |
| M12 / M16 /    | 20x85  | 85                              |                   | partiti                      |            |                                   |  |  |
| IG-M8 / IG-M10 | 20x130 | 130                             |                   |                              |            |                                   |  |  |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

#### Table C87: Displacements

| Anchor size    | Sleeve | h <sub>ef</sub><br>[mm] | N<br>[kN] | δ <sub>N</sub> / N<br>[mm/kN] | δ <sub>N0</sub><br>[mm] | δ <sub>N∞</sub><br>[mm] | V<br>[kN] | δ <sub>V0</sub><br>[mm] | δ <sub>V∞</sub><br>[mm] |
|----------------|--------|-------------------------|-----------|-------------------------------|-------------------------|-------------------------|-----------|-------------------------|-------------------------|
| M8             | 12x80  | 80                      | 0.47      |                               | 0.11                    | 0.07                    |           |                         |                         |
| M8 / M10/ IG-  | 16x85  | 85                      | 0,17      |                               | 0,14                    | 0,27                    |           |                         |                         |
| M6             | 16x130 | 130                     | 0,14      | 0,80                          | 0,11                    | 0,23                    | 0,3       | 0,9                     | 1,35                    |
| M12 / M16 /    | 20x85  | 85                      | 0,17      |                               | 0,14                    | 0,27                    |           |                         |                         |
| IG-M8 / IG-M10 | 20x130 | 130                     | 0,14      |                               | 0,11                    | 0,23                    |           |                         |                         |

Injection System VMU plus for masonry

Performance - Clay hollow brick Brique creuse C40
Characteristic values of resistance, Displacements

Annex C35

<sup>2)</sup> Calculation of V<sub>Rk,c</sub> see ETAG 029, Annex C

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8



### Brick type: Clay hollow brick Blocchi Leggeri

Table C88: Description of the brick

| Brick type                              | Clay hollow brick<br>Blocchi Leggeri |     |
|-----------------------------------------|--------------------------------------|-----|
| Bulk density $\rho  [kg/dm^3]$          | 0,6                                  |     |
| Compressive strength $f_b \ge [N/mm^2]$ | 4, 6, 8 or 12                        | No. |
| Code                                    | EN 771-1                             | 134 |
| Producer (country code)                 | e.g. Wienerberger (IT)               |     |
| Brick dimensions [mm]                   | 250 x 120 x 250                      |     |
| Drilling method                         | Rotary                               |     |
| 120                                     | 32 - 4                               | 3 - |
| 1                                       | 250                                  |     |

Table C89: Spacing and edge distances

| Anchor size           |                    |      | All sizes               |  |
|-----------------------|--------------------|------|-------------------------|--|
| Edge distance         | Ccr                | [mm] | 100 (120) <sup>1)</sup> |  |
| Minimum edge distance | Cmin               | [mm] | 60                      |  |
| Section               | S <sub>cr,II</sub> | [mm] | 250                     |  |
| Spacing               | S <sub>cr.</sub>   | [mm] | 120                     |  |
| Minimum spacing       | Smin               | [mm] | 100                     |  |

<sup>1)</sup> Value in brackets for VM-SH 20x85; VM-SH 20x130 and VM-SH 20x200

Table C90: Group factor for anchor group in case of tension loading

| Configurat                                                | ion | with c [mm] ≥   | with s [mm] ≥ |                      |     |     |
|-----------------------------------------------------------|-----|-----------------|---------------|----------------------|-----|-----|
| II: anchors placed parallel to horizontal                 |     | 60              | 100           | 17                   |     | 1,0 |
| joint                                                     |     | C <sub>cr</sub> | 250           | - ag,n,li            | [-] | 2,0 |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint |     | 60              | 100           | $\alpha_{g,N,\perp}$ | [-] | 2,0 |

#### Injection System VMU plus for masonry

#### Performance - Clay hollow brick Blocchi Leggeri

Description of the brick, Spacing and edge distances, Group factor

Annex C36



#### Brick type: Clay hollow brick Blocchi Leggeri

Table C91: Group factor for anchor group in case of shear loading parallel to free edge

| Configura                                           | tion  | with c [mm] ≥    | with s [mm] ≥     |                    |     |     |
|-----------------------------------------------------|-------|------------------|-------------------|--------------------|-----|-----|
| II: anchors placed parallel to horizontal joint     |       | 60 <sup>1)</sup> | 100 <sup>1)</sup> |                    |     | 1,0 |
|                                                     | V     | C <sub>cr</sub>  | 250               | -αg,∨,II           |     | 2,0 |
| L: anchors placed perpendicular to horizontal joint |       | 60 <sup>1)</sup> | 100 <sup>1)</sup> |                    | [-] | 1,6 |
|                                                     | J V . | C <sub>cr</sub>  | 250               | α <sub>g,V,⊥</sub> |     | 2,0 |

<sup>1)</sup> Only valid for V<sub>Rk,b</sub> according to Table C93 and C94 values in brackets

Table C92: Group factor for anchor group in case of shear load perpendicular to free edge

| Configura                            | tion | with c [mm] ≥    | with s [mm] ≥     |                     |     |     |
|--------------------------------------|------|------------------|-------------------|---------------------|-----|-----|
| II: anchors placed                   | 7    | 60 <sup>1)</sup> | 100 <sup>1)</sup> |                     |     | 1,0 |
| parallel to horizontal joint         | V    | C <sub>CI</sub>  | 250               | α <sub>g,∨,ii</sub> |     | 2,0 |
| ⊥: anchors placed                    |      | 60 <sup>1)</sup> | 100 <sup>1)</sup> |                     | [-] | 1,6 |
| perpendicular to<br>horizontal joint | V    | C <sub>Cr</sub>  | 250               | α <sub>g,√,⊥</sub>  |     | 2,0 |

<sup>1)</sup> Only valid for V<sub>Rk,b</sub> according to Table C93 and C94 values in brackets

Table C93: Characteristic values of resistance under tension and shear load

|                    |                                 |                 |                             | Characteristic                            | resistance             |                                       |  |  |  |
|--------------------|---------------------------------|-----------------|-----------------------------|-------------------------------------------|------------------------|---------------------------------------|--|--|--|
|                    |                                 | Φ               | Use category                |                                           |                        |                                       |  |  |  |
| Anchor size Sleeve | Effective<br>Anchorage<br>depth |                 | d/d<br>w/d<br>w/w           |                                           |                        |                                       |  |  |  |
|                    |                                 | 40°C/24°C       | 80°C/50°C                   | 120°C/72°C                                | All temperature ranges |                                       |  |  |  |
|                    |                                 | h <sub>ef</sub> | $N_{Rk,b} = N_{Rk,p}^{(1)}$ |                                           |                        | V <sub>Rk,b</sub> <sup>4)</sup>       |  |  |  |
|                    |                                 | [mm]            |                             | [kN]                                      |                        |                                       |  |  |  |
|                    |                                 |                 | Compressive stren           | ngth f <sub>b</sub> ≥ 4 N/mm <sup>2</sup> |                        |                                       |  |  |  |
| M8                 | 12x80                           | 80              |                             |                                           |                        | UT-                                   |  |  |  |
| M8 / M10/          | 16x85                           | 85              |                             |                                           |                        |                                       |  |  |  |
| IG-M6              | 16x130                          | 130             | 0.4                         | 0.4                                       | 0.2                    | 2,0 <sup>2)</sup> (0,9) <sup>3)</sup> |  |  |  |
| M12 / M16 /        | 20x85                           | 85              | 0,4                         | 0,4                                       | 0,3                    | 2,0 (0,9)                             |  |  |  |
| IG-M8 /            | 20x130                          | 130             |                             |                                           |                        |                                       |  |  |  |
| IG-M10             | 20x200                          | 200             |                             |                                           |                        |                                       |  |  |  |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

# Injection System VMU plus for masonry Performance - Clay hollow brick Blocchi Leggeri Group factor, Characteristic values of resistance Annex C37

Calculation of V<sub>Rk,c</sub> see ETAG 029, Annex C, except for shear load parallel to free edge with c ≥ 125 mm: V<sub>Rk,c,II</sub> = V<sub>Rk,b</sub>

Values in brackets  $V_{Rk,c} = V_{Rk,b}$  for anchors with  $c_{min}$ 

<sup>4)</sup> The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply V<sub>Rk,b</sub> by 0,8



#### Brick type: Clay hollow brick Blocchi Leggeri

Table C94: Characteristic values of resistance under tension and shear load (continue)

|             |        |                                 |                   | Characteristic                            | resistance |                                 |
|-------------|--------|---------------------------------|-------------------|-------------------------------------------|------------|---------------------------------|
|             |        | η <u>Φ</u>                      |                   | Use cat                                   | egory      |                                 |
| Anchor size | Sleeve | Effective<br>Anchorage<br>depth |                   | d/d<br>w/d<br>w/w                         |            | d/d<br>w/d<br>w/w               |
|             |        | Α .                             | 40°C/24°C         | 80°C/50°C                                 | 120°C/72°C | All temperature ranges          |
|             |        | h <sub>ef</sub>                 |                   | $N_{Rk,b} = N_{Rk,p}^{-1}$                |            | V <sub>Rk,b</sub> <sup>4)</sup> |
|             |        | [mm]                            |                   | [kN]                                      |            | [kN]                            |
|             |        |                                 | Compressive strer |                                           |            |                                 |
| M8          | 12x80  | 80                              | 7.0               |                                           |            |                                 |
| M8 / M10/   | 16x85  | 85                              |                   |                                           |            |                                 |
| IG-M6       | 16x130 | 130                             | 0,5               | 0,5                                       | 0,4        | $2,5^{2)}(1,2)^{3)}$            |
| M12 / M16 / | 20x85  | 85                              | 0,5               | 0,5                                       | 0,4        | 2,5 (1,2)                       |
| IG-M8 /     |        | 130                             |                   |                                           |            |                                 |
| IG-M10      | 20x200 | 200                             |                   |                                           |            |                                 |
|             |        | (a)                             | Compressive strer | ngth f <sub>b</sub> ≥ 8 N/mm <sup>2</sup> |            | •                               |
| M8          | 12x80  | 80                              |                   |                                           |            |                                 |
| M8 / M10/   | 16x85  | 85                              |                   |                                           |            |                                 |
| IG-M6       | 16x130 | 130                             | 0,6               | 0,6                                       | 0,5        | $3,0^{2)}(1,2)^{3)}$            |
| M12 / M16 / | 20x85  | 85                              | 0,0               | 0,0                                       | 3,3        | 0,0 (1,2)                       |
| IG-M8 /     | 20x130 | 130                             |                   |                                           |            |                                 |
| IG-M10      | 20x200 | 200                             |                   | 2                                         |            |                                 |
|             |        |                                 | Compressive stren | gth f <sub>b</sub> ≥ 12 N/mm <sup>2</sup> |            | 1                               |
| M8          | 12x80  | 80                              |                   |                                           |            |                                 |
| M8 / M10/   | 16x85  | 85                              |                   |                                           |            |                                 |
| IG-M6       | 16x130 | 130                             | 0,6               | 0,6                                       | 0,6        | $3,5^{2)}(1,5)^{3)}$            |
| M12 / M16 / | 20x85  | 85                              | 63,63             |                                           | 50850      | State Nation                    |
| IG-M8 /     | 20x130 | 130                             |                   |                                           |            |                                 |
| IG-M10      | 20x200 | 200                             |                   |                                           |            |                                 |

Values are valid for ccr and cmin

#### Table C95: **Displacements**

| Anchor size Sleeve | h <sub>ef</sub> | N         | δ <sub>N</sub> / N | $\delta_{N0}$ | δ <sub>N∞</sub> | V    | $\delta_{V0}$ | δ∨∞  |      |
|--------------------|-----------------|-----------|--------------------|---------------|-----------------|------|---------------|------|------|
|                    | [mm]            | [kN]      | [mm/kN]            | [mm]          | [mm]            | [kN] | [mm]          | [mm] |      |
| All sizes          | All sizes       | All sizes | 0,17               | 1,20          | 0,21            | 0,41 | 0,9           | 1,20 | 1,80 |

| Injection System VMU plus for masonry                                                              |           |
|----------------------------------------------------------------------------------------------------|-----------|
| Performance - Clay hollow brick Blocchi Leggeri Characteristic values of resistance, Displacements | Annex C38 |

<sup>2)</sup> Calculation of V<sub>Rk,c</sub> see ETAG 029, Annex C, except for shear load parallel to free edge with c ≥ 125 mm: V<sub>Rk,c,II</sub> = V<sub>Rk,b</sub>

Values in brackets  $V_{Rk,c} = V_{Rk,b}$  for anchors with  $c_{min}$ The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8



#### Brick type: Clay hollow brick Doppio Uni

Table C96: Description of the brick

| Table C96: Description of               | the brick                                                     |
|-----------------------------------------|---------------------------------------------------------------|
| Brick type                              | Clay hollow brick Doppio Uni                                  |
| Bulk density $\rho  [kg/dm^3]$          | 0,9<br>10, 16, 20 or 28<br>EN 771-1<br>e.g. Wienerberger (IT) |
| Compressive strength $f_b \ge [N/mm^2]$ | 10, 16, 20 or 28                                              |
| Code                                    | EN 771-1                                                      |
| Producer (country code)                 | e.g. Wienerberger (IT)                                        |
| Brick dimensions [mm]                   | 250 x 120 x 120                                               |
| Drilling method                         | Rotary                                                        |
| 11                                      | 9 9 9 120                                                     |

Table C97: Spacing and edge distances

| Anchor size           |                                |      | All sizes               |  |  |
|-----------------------|--------------------------------|------|-------------------------|--|--|
| Edge distance         | c <sub>cr</sub> [mm]           |      | 100 (120) <sup>1)</sup> |  |  |
| Minimum edge distance | C <sub>min</sub> <sup>2)</sup> | [mm] | 60                      |  |  |
| Casalas               | S <sub>cr,II</sub>             | [mm] | 250                     |  |  |
| Spacing               | S <sub>cr,⊥</sub>              | [mm] | 120                     |  |  |
| Minimum annaine       | S <sub>min,II</sub>            | [mm] | 100                     |  |  |
| Minimum spacing       | S <sub>min,⊥</sub>             | [mm] | 120                     |  |  |

250

Table C98: Group factor for anchor group in case of tension loading

| Configuration                                             |     | with c [mm] ≥   | with s [mm] ≥ |                      |     |     |
|-----------------------------------------------------------|-----|-----------------|---------------|----------------------|-----|-----|
| II: anchors placed                                        |     | 60              | 100           |                      |     | 1,0 |
| parallel to horizontal joint                              |     | C <sub>cr</sub> | 250           | -α <sub>g,N,II</sub> | [-] | 2,0 |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint | 1 1 | 60              | 100           | $\alpha_{g,N,\perp}$ | [-] | 2,0 |

#### Injection System VMU plus for masonry

#### Performance - Clay hollow brick Doppio Uni

Description of the brick, Spacing and edge distances, Group factor

Annex C39

Value in brackets for VM-SH 20x85; VM-SH 20x130 and VM-SH 20x200

<sup>&</sup>lt;sup>2)</sup> For V<sub>Rk,c</sub>: c<sub>min</sub> according to ETAG 029, Annex C



#### Brick type: Clay hollow brick Doppio Uni

Table C99: Group factor for anchor group in case of shear loading parallel to free edge

| Configura                                           | tion | with c [mm] ≥ with s [mm] ≥ |     |                      |     | 4   |
|-----------------------------------------------------|------|-----------------------------|-----|----------------------|-----|-----|
| II: anchors placed parallel to horizontal joint     | V •  | C <sub>cr</sub>             | 250 | αg,V,II              |     | 2,0 |
| ⊥: anchors placed perpendicular to horizontal joint | V    | C <sub>C</sub>              | 120 | $\alpha_{g,V,\perp}$ | [-] | 2,0 |

#### Table C100: Group factor for anchor group in case of shear load perpendicular to free edge

| Configura                                           | tion | with c [mm] ≥ with s [r |     |                     |     |     |
|-----------------------------------------------------|------|-------------------------|-----|---------------------|-----|-----|
| II: anchors placed parallel to horizontal joint     | V    | C <sub>cr</sub>         | 250 | α <sub>g,V,II</sub> |     | 2,0 |
| ⊥: anchors placed perpendicular to horizontal joint | V    | C <sub>cr</sub>         | 120 | α <sub>g,V,⊥</sub>  | [-] | 2,0 |

#### Table C101: Characteristic values of resistance under tension and shear load

|                    |                                 |                 |                      | Characteristic               | c resistance           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|--------------------|---------------------------------|-----------------|----------------------|------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                    |                                 | . υ             | Use category         |                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Anchor size Sleeve | Effective<br>Anchorage<br>depth |                 |                      | d/d<br>w/d<br>w/w            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                    | 4                               | 40°C/24°C       | 80°C/50°C 120°C/72°C |                              | All temperature ranges |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                    |                                 | h <sub>ef</sub> |                      | $N_{Rk,b} = N_{Rk,p}^{-1)}$  |                        | V <sub>Rk,b</sub> <sup>2)3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                    |                                 | [mm]            |                      | [kN]                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                    |                                 |                 | Compressive stren    | gth f <sub>b</sub> ≥10 N/mm² |                        | A STATE OF THE STA |  |  |  |
| M8                 | 12x80                           | 80              |                      |                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| M8 / M10/          | 16x85                           | 85              |                      |                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| IG-M6              | 16x130                          | 130             | 0,6                  | 0.6                          | 0,5                    | 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| M12 / M16 /        | 20x85                           | 85              | 0,6                  | 0,6                          | U,S                    | 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| IG-M8 /            | 20x130                          | 130             |                      |                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| IG-M10             | 20x200                          | 200             |                      |                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

Injection System VMU plus for masonry

Performance - Clay hollow brick Doppio Uni
Group factor, Characteristic values of resistance

Annex C40

<sup>2)</sup> Calculation of V<sub>Rk.o</sub> see ETAG 029, Annex C

<sup>3)</sup> The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply V<sub>Rk,b</sub> by 0,8



#### Brick type: Clay hollow brick Doppio Uni

Table C102: Characteristic values of resistance under tension and shear load (continue)

|                        |                 |                                 |                                        | Characteristic                            | resistance |                                   |  |
|------------------------|-----------------|---------------------------------|----------------------------------------|-------------------------------------------|------------|-----------------------------------|--|
|                        |                 | a <u>o</u>                      |                                        | Use cat                                   | egory      |                                   |  |
| Anchor size            | Sleeve          | Effective<br>Anchorage<br>depth |                                        | d/d<br>w/d<br>w/w                         |            |                                   |  |
|                        |                 | 4                               | 40°C/24°C                              | 80°C/50°C                                 | 120°C/72°C | All temperature ranges            |  |
|                        |                 | h <sub>ef</sub>                 | 3                                      | $N_{Rk,b} = N_{Rk,p}^{-1}$                |            | V <sub>Rk,b</sub> <sup>2)3)</sup> |  |
|                        |                 | [mm]                            |                                        | [kN]                                      |            | [kN]                              |  |
|                        |                 |                                 | Compressive streng                     | gth f <sub>b</sub> ≥16 N/mm²              |            |                                   |  |
| M8                     | 12x80           | 80                              |                                        |                                           |            |                                   |  |
| M8 / M10/              | 16x85           | 85                              |                                        | 0,75                                      |            |                                   |  |
| IG-M6                  | 16x130          | 130                             | 0.75                                   |                                           | 0.0        | 2.0                               |  |
| M12 / M16 /            | 20x85           | 85                              | 0,75                                   |                                           | 0,6        | 2,0                               |  |
| IG-M8 /                | 20x130          | 130                             |                                        |                                           |            |                                   |  |
| IG-M10                 | 20x200          | 200                             |                                        |                                           |            |                                   |  |
|                        |                 | 7V)                             | Compressive stren                      | gth f <sub>b</sub> ≥ 20 N/mm²             | 7          |                                   |  |
| M8                     | 12x80           | 80                              |                                        |                                           | 0,75       |                                   |  |
| M8 / M10/              | 16x85           | 85                              |                                        |                                           |            |                                   |  |
| IG-M6                  | 16x130          | 130                             | 0,9                                    | 0,9                                       |            | 2,0                               |  |
| M12 / M16 /            | 20x85           | 85                              | 5,5                                    | 2,2                                       | 7,1.0      | 713                               |  |
| IG-M8 /                | 20x130          | 130                             |                                        |                                           |            |                                   |  |
| IG-M10                 | 20x200          | 200                             | A property to the second of the second |                                           |            |                                   |  |
| 140                    | 10.00           | 00                              | Compressive stren                      | gth f <sub>b</sub> ≥ 28 N/mm <sup>2</sup> |            |                                   |  |
| M8                     | 12x80           | 80                              |                                        |                                           |            |                                   |  |
| M8 / M10/<br>IG-M6     | 16x85           | 85                              |                                        |                                           |            |                                   |  |
|                        | 16x130<br>20x85 | 130<br>85                       | 1,2                                    | 1,2                                       | 0,9        | 2,5                               |  |
| M12 / M16 /<br>IG-M8 / | 20x65<br>20x130 | 130                             |                                        |                                           |            |                                   |  |
| IG-M10                 | 20x130          | 200                             |                                        |                                           |            |                                   |  |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

#### Table C103: Displacements

| Anchor size Sleeve | h <sub>ef</sub> | N         | δ <sub>N</sub> / N | $\delta_{N0}$ | δ <sub>N∞</sub> | V    | $\delta_{V0}$ | δ∨∞  |      |
|--------------------|-----------------|-----------|--------------------|---------------|-----------------|------|---------------|------|------|
|                    | [mm]            | [kN]      | [mm/kN]            | [mm]          | [mm]            | [kN] | [mm]          | [mm] |      |
| All sizes          | All sizes       | All sizes | 0,26               | 1,20          | 0,31            | 0,62 | 0,6           | 0,3  | 0,45 |

| Injection System VMU plus for masonry                                                            |           |
|--------------------------------------------------------------------------------------------------|-----------|
| Performance - Clay hollow brick Doppio Uni<br>Characteristic values of resistance, Displacements | Annex C41 |

Calculation of V<sub>Rk,c</sub> see ETAG 029, Annex C

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8



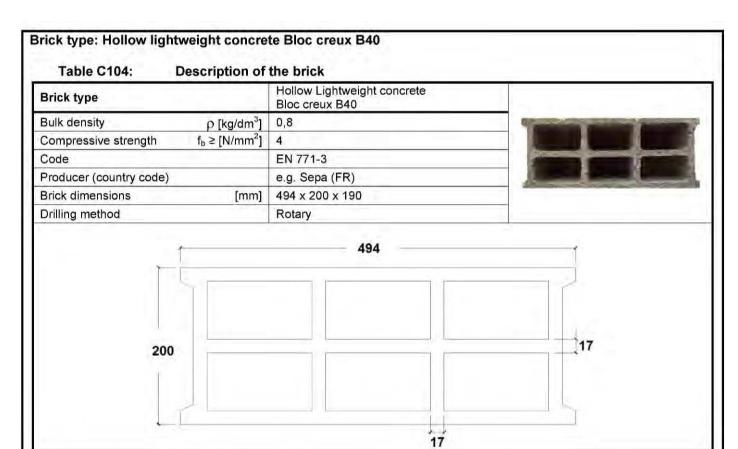



Table C105: Spacing and edge distances

| Anchor size           |                                |      | All sizes               |  |  |
|-----------------------|--------------------------------|------|-------------------------|--|--|
| Edge distance         | Ccr                            | [mm] | 100 (120) <sup>1)</sup> |  |  |
| Minimum edge distance | C <sub>min</sub> <sup>2)</sup> | [mm] | 100 (120) <sup>1)</sup> |  |  |
| Casalas               | S <sub>cr,II</sub>             | [mm] | 494                     |  |  |
| Spacing               | Scr.1                          | [mm] | 190                     |  |  |
| Minimum spacing       | Smin                           | [mm] | 100                     |  |  |

<sup>1)</sup> Value in brackets for VM-SH 20x85 and VM-SH 20x130

Table C106: Group factor for anchor group in case of tension loading

| Configuration                                   | with c [mm] ≥   | with s [mm] ≥ |                     |     |     |
|-------------------------------------------------|-----------------|---------------|---------------------|-----|-----|
| II: anchors placed parallel to horizontal joint | 100             | 100           | 15.3                |     | 1,5 |
|                                                 | C <sub>cr</sub> | 494           | α <sub>g,N,II</sub> | [-] | 2,0 |
| 1: anchors placed                               | 100             | 100           |                     | 171 | 1,0 |
| perpendicular to<br>horizontal joint            | C <sub>cr</sub> | 190           | -α <sub>g,N,⊥</sub> |     | 2,0 |

| Injection System VMU plus for masonry                              |           |
|--------------------------------------------------------------------|-----------|
| Performance - Hollow Lightweight concrete Bloc creux B40           | Annex C42 |
| Description of the brick, Spacing and edge distances, Group factor |           |

<sup>2)</sup> For V<sub>Rk,c</sub>: c<sub>min</sub> according to ETAG 029, Annex C



#### Brick type: Hollow lightweight concrete Bloc creux B40

Table C107: Group factor for anchor group in case of shear loading parallel to free edge

| Configurat                                      | tion | with c [mm] ≥   | with s [mm] ≥ |                    |     |     |
|-------------------------------------------------|------|-----------------|---------------|--------------------|-----|-----|
| II: anchors placed parallel to horizontal joint | 50   | 100             |               |                    | 1,1 |     |
|                                                 |      | C <sub>cr</sub> | 494           | -αg,∨,II           | [-] | 2,0 |
| 1: anchors placed                               |      | 100             | 100           |                    |     | 1,1 |
| perpendicular to horizontal joint               | V    | C <sub>cr</sub> | 190           | α <sub>g,V,⊥</sub> |     | 2,0 |

Table C108: Group factor for anchor group in case of shear load perpendicular to free edge

| Configura                                                 | tion | with c [mm] ≥   | with s [mm] ≥ |                     |     |     |
|-----------------------------------------------------------|------|-----------------|---------------|---------------------|-----|-----|
| II: anchors placed parallel to horizontal joint           | V    | C <sub>Cr</sub> | 494           | α <sub>g,V,II</sub> |     | 2,0 |
| ⊥: anchors placed<br>perpendicular to<br>horizontal joint | V    | C <sub>cr</sub> | 190           | α <sub>g,V,⊥</sub>  | [-] | 2,0 |

Table C109: Characteristic values of resistance under tension and shear load

|                    |                                 |                 |           | Char                  | acteristic res          | sistance     |                                       |            |                                   |     |     |      |     |
|--------------------|---------------------------------|-----------------|-----------|-----------------------|-------------------------|--------------|---------------------------------------|------------|-----------------------------------|-----|-----|------|-----|
|                    |                                 |                 | - U       |                       |                         | Use category |                                       |            |                                   |     |     |      |     |
| Anchor size Sleeve | Effective<br>anchorage<br>depth | chorage de pth  |           | w/d<br>w/w            |                         |              | d/d<br>w/d<br>w/w                     |            |                                   |     |     |      |     |
|                    | Sieeve                          |                 | 40°C/24°C | 80°C/50°C             | 120°C/72°C              | 40°C/24°C    | 80°C/50°C                             | 120°C/72°C | All<br>temperature<br>ranges      |     |     |      |     |
|                    |                                 | h <sub>ef</sub> |           | $N_{Rk,b} = N_{Rk,p}$ | 1)                      |              | N <sub>Rk,b</sub> = N <sub>Rk,p</sub> | 1)         | V <sub>Rk,b</sub> <sup>2)3)</sup> |     |     |      |     |
|                    |                                 | [mm]            | [kN]      |                       |                         |              |                                       |            |                                   |     |     |      |     |
|                    |                                 |                 | Compre    | essive stre           | ngth f <sub>b</sub> ≥4N | /mm²         |                                       |            |                                   |     |     |      |     |
| M8                 | 12x80                           | 80              |           |                       |                         | 0,9          |                                       |            |                                   |     |     |      |     |
| Me / Mao/ IC Me    | 16x85                           | 85              |           |                       |                         | 1,2          |                                       |            | 100                               |     |     |      |     |
| M8 / M10/ IG-M6    | 16x130                          | 130             | 1,2       | 0,9                   | 0,9                     | 0,9          | 0,9                                   | 0,9        | 0,75                              | 1,2 | 0,9 | 0,75 | 3,0 |
| M12 / M16 /        | M12 / M16 / 20x85               | 85              |           |                       |                         | 1,2          |                                       |            |                                   |     |     |      |     |
| 10 Mg /10 M40      | 20x130                          | 130             |           | 1                     |                         | 1,2          |                                       |            |                                   |     |     |      |     |

Values are valid for c<sub>cr</sub> and c<sub>min</sub>

2) Calculation of V<sub>Rkc</sub> see ETAG 029, Annex C, except for shear load parallel to free edge with c ≥ 250 mm: V<sub>Rkc,ll</sub> = V<sub>Rk,b</sub>

#### Table C110: Displacements

| Anchor size Sleeve | h <sub>ef</sub> | N            | δ <sub>N</sub> / N | δηο       | δN∞  | V    | δνο  | δ∨∞  |      |
|--------------------|-----------------|--------------|--------------------|-----------|------|------|------|------|------|
|                    | [mm]            | [kN]         | [mm/kN]            | [mm] [mm] |      | [kN] | [mm] | [mm] |      |
| All sizes          | All sizes       | All<br>sizes | 0,34               | 0,90      | 0,31 | 0,62 | 0,86 | 0,9  | 1,35 |

#### Injection System VMU plus for masonry

#### Performance - Hollow lightweight concrete Bloc creux B40

Group factor, Characteristic values of resistance, Displacements

Annex C43

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply V<sub>Rk,b</sub> by 0,8



#### Brick type: Solid lightweight concrete - LAC

Table C111: Description of the brick

| Brick type              |                    | Solid lightweight concrete LAC |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------|--------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bulk density            | $\rho [kg/dm^3]$   | 0,6                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Compressive strength    | $f_b \ge [N/mm^2]$ | 2                              | A STATE OF THE STA |
| Code                    |                    | EN 771-3                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Producer (country code) |                    | e.g. Bisotherm (DE)            | A STATE OF THE PARTY OF THE PAR |
| Brick dimensions        | [mm]               | 300 x 123 x 248                | A TANAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Drilling method         |                    | Rotary                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

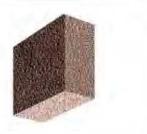



Table C112: Spacing and edge distances

| Anchor size           |      |      | All sizes           |  |
|-----------------------|------|------|---------------------|--|
| Edge distance         | Ccr  | [mm] | 1,5*h <sub>ef</sub> |  |
| Minimum edge distance | Cmin | [mm] | 60                  |  |
| Spacing               | Scr  | [mm] | 3*h <sub>ef</sub>   |  |
| Minimum spacing       | Smin | [mm] | 120                 |  |

Table C113: Group factor for anchor group in case of tension loading

| Configuration                                   | with c [mm] ≥ | with s [mm] ≥     |                     |     |     |
|-------------------------------------------------|---------------|-------------------|---------------------|-----|-----|
| II: anchors placed parallel to horizontal joint | 90            | 120               |                     |     | 1,1 |
|                                                 | 1,5*hef       | 3*h <sub>ef</sub> | α <sub>g,N,II</sub> |     | 2,0 |
| 1: anchors placed                               | 124           | 120               | I Local             | [-] | 1,1 |
| perpendicular to horizontal joint               | 1,5*hef       | 3*h <sub>ef</sub> | α <sub>g,N,⊥</sub>  |     | 2,0 |

Table C114: Group factor for anchor group in case of shear loading parallel to free edge

| Configuration                     | with c [mm] ≥ | with s [mm] ≥ |                     |     |     |
|-----------------------------------|---------------|---------------|---------------------|-----|-----|
| II: anchors placed                | 60            | 120           |                     |     | 0,6 |
| parallel to horizontal joint      | 90            | 120           | α <sub>g,V,II</sub> | 6.1 | 2,0 |
| 1: anchors placed                 | 60            | 120           |                     | [-] | 0,6 |
| perpendicular to horizontal joint | 124           | 120           | α <sub>g,V,⊥</sub>  |     | 2,0 |

Table C115: Group factor for anchor group in case of shear load perpendicular to free edge

| Configuration                                       |       | with c [mm] ≥ | with s [mm] ≥ | - 4                 |     |     |
|-----------------------------------------------------|-------|---------------|---------------|---------------------|-----|-----|
| II: anchors placed                                  |       | 60            | 120           |                     |     | 0,6 |
| parallel to horizontal joint                        | V     | 90            | 120           | α <sub>g,V,II</sub> |     | 2,0 |
| ⊥: anchors placed perpendicular to horizontal joint |       | 60            | 120           |                     | [-] | 0,6 |
|                                                     | V-••  | 1,5*hef       | 120           | α <sub>g,V,⊥</sub>  |     | 1,0 |
|                                                     | Ľ u L | 1,5*hef       | 3*hef         |                     |     | 2,0 |

#### Injection System VMU plus for masonry

#### Performance - Solid lightweight concrete - LAC

Description of the brick, Spacing and edge distances, Group factor

Annex C44



#### Brick type: Solid lightweight concrete - LAC

Table C116: Characteristic values of resistance under tension and shear load

| ALCO SIGNAPORE REPORTED TO THE SECOND |                                                           |                                 | Characteristic resistance                             |      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                              |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------|-------------------------------------------------------|------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|--|--|
| Anchor size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sleeve                                                    | Effective<br>anchorage<br>depth | Use category                                          |      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                 | d/d                                                   |      |            | w/d<br>w/w |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | d/d<br>w/d<br>w/w            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                 | and the second second                                 |      | 120°C/72°C |            | The state of the s | Turnish sameton - Solid rook fill saler also | All<br>temperature<br>ranges |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | h <sub>ef</sub>                 | $N_{Rk,b} = N_{Rk,p}^{-1}$ $N_{Rk,b} = N_{Rk,p}^{-1}$ |      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | $V_{Rk,b}^{2)3)}$            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | [mm]                            |                                                       | [kN] |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Compressive strength f <sub>b</sub> ≥ 2 N/mm <sup>2</sup> |                                 |                                                       |      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                              |  |  |
| M8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.₩                                                       | 80                              | 3,0                                                   | 2,5  | 2,0        | 2,5        | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,5                                          | 3,0                          |  |  |
| M8 / M10/ IG-M6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                         | 90                              | 3,0                                                   | 3,0  | 2,0        | 2,5        | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,0                                          | 3,0                          |  |  |
| M10 /<br>IG-M8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98                                                        | 100                             | 3,5                                                   | 3,0  | 2,5        | 3,0        | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,0                                          | 3,0                          |  |  |
| M16 /<br>IG-M10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 <b>₩</b>                                                | 100                             | 3,0                                                   | 3,0  | 2,0        | 3,0        | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,0                                          | 3,0                          |  |  |
| M8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12x80                                                     | 80                              | 2,5                                                   | 2,5  | 2,0        | 2,5        | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,5                                          | 3,0                          |  |  |
| M8 / M10/<br>IG-M6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16x85                                                     | 85                              | 3,0                                                   | 2,5  | 2,0        | 3,0        | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,0                                          | 3,0                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16x130                                                    | 130                             | 3,0                                                   | 2,5  | 2,0        | 3,0        | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,0                                          | 3,0                          |  |  |
| M12 / M16 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20x85                                                     | 85                              | 2,5                                                   | 2,5  | 2,0        | 2,5        | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,0                                          |                              |  |  |
| IG-M8 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20x130                                                    | 130                             |                                                       |      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 3,0                          |  |  |
| IG-M10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20x200                                                    | 200                             |                                                       |      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 2005                         |  |  |

Values are valid for c<sub>cr</sub>, values in brackets are valid for single anchors with c<sub>min</sub>

Table C117: Displacements

| ř d                           | 7      |                 |      |                    |               |                 |      |               | 7               |
|-------------------------------|--------|-----------------|------|--------------------|---------------|-----------------|------|---------------|-----------------|
| Anchor size                   | Sleeve | h <sub>ef</sub> | N    | δ <sub>N</sub> / N | $\delta_{N0}$ | δ <sub>N∞</sub> | V    | $\delta_{V0}$ | δ <sub>V∞</sub> |
|                               |        | [mm]            | [kN] | [mm/kN]            | [mm]          | [mm]            | [kN] | [mm]          | [mm]            |
| M8                            | -      | 80              |      |                    |               |                 | 0,9  | 0,25          | 0,38            |
| M8 / M10/<br>IG-M6            | 7=     | 90              | 0,86 | 0,50               | 0,43          | 0,86            |      |               |                 |
| M10 / IG-M8                   |        | 100             | 1,00 | 0.25               | 0,35          | 0,70            |      |               |                 |
| M16 / IG-M10                  | 2.5    | 100             | 0,86 | 0,35               | 0,30          | 0,60            |      |               |                 |
| M8                            | 12x80  | 80              |      | 0,50               | 0,36          | 0,71            | 0,9  | 0,25          | 0,38            |
| M8 / M10/<br>IG-M6            | 16x85  | 85              | 0,71 | 0,35               | 0,25          | 0,50            |      |               |                 |
|                               | 16x130 | 130             |      |                    |               |                 |      |               |                 |
| M12 / M16 /<br>IG-M8 / IG-M10 | 20x85  | 85              |      |                    |               |                 |      |               |                 |
|                               | 20x130 | 130             |      |                    |               |                 |      |               |                 |
|                               | 20x200 | 200             |      |                    |               |                 |      |               |                 |

| Injec | tion System VMU plus for masonry                                                          |           |
|-------|-------------------------------------------------------------------------------------------|-----------|
|       | ormance - Solid lightweight concrete - LAC acteristic values of resistance, Displacements | Annex C45 |

For calculation of V<sub>Rk,c</sub> see ETAG029, Annex C

The values are valid for steel 5.6 or higher. For steel 4.6 and 4.8 multiply  $V_{Rk,b}$  by 0,8